
Modeling User Input and Hypermedia Dynamics in Hera

Geert-Jan Houben, Flavius Frasincar, Peter Barna, and Richard Vdovjak

Technische Universiteit Eindhoven
PO Box 513, NL-5600 MB Eindhoven, The Netherlands

{houben, flaviusf, pbarna, rvdovjak}@win.tue.nl

Abstract. Methodologies for the engineering of Web applications typically pro-
vide models that drive the generation of the hypermedia navigation structure in
the application. Most of these methodologies and their models consider link fol-
lowing as the only materialization of the navigation structure. In this paper we see
how extended user input can dynamically influence the navigation structure. By
means of Hera it is shown how one can define this extended user input and capture
the functional aspects related to the hypermedia dynamics in the RDF(S)-based
design models. For this purpose we discuss the definition of input controls, the
representation of state information, and the embedding of both in the application
model. We also present the XML/RDF-based architecture implementing this.

1 Introduction

Under the influence of the World Wide Web we have seen the development of a new
type of (data-intensive) information systems. These so-called Web Information Systems
(WIS) [1] are characterized by the use of hypermedia navigation through the content
of the system, in combination with the traditional functions of an information system
allowing to update and query the content. As examples of WIS applications we mention
online services like real-estate sales, employee information, museum information, or
mail order catalogs.

The engineering of WIS requires different methodologies than the ones than we have
been using for information system development over the last decades. In the traditional
approach, used for example in more database-oriented applications, we see that most of
the engineering activity is related to structuring the data so that the structure matches
the standard software component, i.e. relational database. The subsequent design of
presenting the content to the user is considered in the query facility associated with the
software. On the other hand, with the original hypermedia approaches we see a different
pattern, since they typically assume a process of manually linking documents. The design
process centers on the design of the navigation in the presentation of the content in terms
of a hyperdocument.

In the engineering of a WIS the designer has a challenging task. On the one hand, the
designer has to provide the users with all benefits from using the hypermedia paradigm
and particularly the notion of navigation through the information offered by the system.
On the other hand, the designer has to support the users in their maintenance of the
content by allowing updates and queries to the data. Many of today’s data-intensive Web
applications show the designer’s attention for the maintenance of the data, but at the

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 60–73, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Modeling User Input and Hypermedia Dynamics in Hera 61

same time they show the risk of losing those benefits of hypermedia that have been the
foundation for the success of the Web.

In the research field of WIS engineering we have seen proposals for methodologies
that extend and improve the methodologies for manual hypermedia design for appli-
cation in data-intensive information systems: we mention as representatives RMM [2],
WebML [3], OOHDM[4], OOWS [5], UWE [6], OO-H [7], and Hera [8]. Typically these
methodologies distinguish themselves from standard information system development
methodologies by their explicit attention for the navigation design. Since however the
WIS applications contain content that is highly dynamic, the design has to support the
dynamics involved with the content. This support includes not just updating the content
stored in the system, but also allowing the user to affect the hypermedia presentation
of the data. Illustrative examples of this influence of the user on the hypermedia pre-
sentation are the history facility that allows the user to go back outside of the presented
hyperlinks, or the shopping basket concept that allows the user to store some information
temporarily during a browsing session. Such influence implies that a certain “state" is
stored by the system to allow the user to interact with the hypermedia presentation and
particularly with its navigational structure.

As we indicated earlier the available WIS engineering methodologies have a strong
focus on the generation of navigation over the content. The user’s actions consisted of
following links, and as a consequence all the system could do was based on that. The
history facility is a straightforward example. Giving the user more possibilities to interact
with the generated hypermedia presentation can help to define or limit the hyperspace
and thus to realize personalization and adaptivity. In a museum application asking the
user to define what is interesting for him can help the system to create a more suitable
navigation structure with specific information about those items on display that interest
the user/visitor.Another example of user influence would be the role of a shopping basket
in the sales communication based on a product catalog; not so much for the registration
of the sales order, but certainly for the adjustment of the presentation in accordance
with the user input, for example by showing a page with the complete contents of the
shopping basket (order). As one of the consequences of this extended user influence
there is a need to deal with navigation data, i.e. data primarily there to support the user in
influencing (e. g. restricting, selecting) the navigation view over the application domain
data. In this paper we show how to model this dynamic navigation through Hera models
that allow the specification of the extended user input, the management of navigation
information, and the effect of both of them on the hypermedia presentation. For this
specification Hera uses semantic web languages that are very suitable for modeling of
semi-structured data and describing their semantics.

In Section 2 we discuss how related work supports this kind of extended user input
in relation to hypermedia dynamics. Section 3 highlights the main principles of the Hera
approach, before we discuss in Section 4 the details of extended user input and dynamics
in Hera: first we present the input controls, then the navigation data model, its effect
on the application dynamics, and finally the architecture of the implementation. In the
conclusion we name the main advantages of this approach compared to other approaches.

62 G.-J. Houben et al.

2 Related Work

In this section we take a closer look at two well-known representative methodologies
WebML and OOHDM to see how they support modeling of user input and hypermedia
(navigation) dynamics.

In WebML [3] the page content and navigation structure is captured in the (advanced)
hypertext model using a predefined set of modeling primitives. The infrastructure for
user input consists of data entry units that have associated with them operation units.
A data entry unit contains a set of input fields that can be filled by users or can have
default values. Data entry units have one or more outgoing links that are activated when
the user fills input fields and submits the information. With a link can be associated
parameters that transfer the input values to the destination unit(s), for example for further
processing by an operation unit. There are several predefined operation units, for instance
for activating external web services or content management operations like creation,
deletion, and update of entities and relations. The whole library of units is open (new
units can be defined in XML) and contains a number of data entry units for different kinds
of user inputs. All contextual information passed between the units by link parameters
is described in separate XML files.

The user input is in OOHDM [4] specified by means of interface objects that are
defined on top of the navigation structure specification. The navigation is described
using navigation classes derived from concept classes, navigation contexts representing
collections of navigation objects, and access structures like links, indices, or guided
tours. The interface objects are instances of interface classes expressed by Abstract Data
Views (ADV). Every ADV defines a set of events (triggered by users) it can handle via
methods of navigational classes, and a set of attributes that can be perceived by users.
The processing of user-triggered events is specified in ADV charts, where the events are
mapped to messages that are sent to navigation objects and can change their state.

3 Hera Methodology

The Hera methodology [8,9] is a model-driven methodology for designing WIS. Be-
fore we concentrate on user input and hypermedia dynamics in the next section, we
will briefly describe the main aspects of Hera. In response to a user query a WIS will
gather (multimedia) data possibly coming from heterogeneous sources and will produce
a meaningful hypermedia (Web) presentation for the retrieved data. The Hera methodol-
ogy automates such a process by providing high level abstractions (in terms of models)
that will drive the (semi-)automatic presentation generation. Moreover, Hera enables the
presentation adaptation based on user preferences and device capabilities, which means
that the presentation generation takes into account issues like the platform being used
(e. g. PC, PDA, WAP phone) [10].

Based on the principle of separation of concerns and for the sake of interoperability
several models have been distinguished. Because these models are considered Web
metadata descriptions that specify different aspects of a WIS, we chose to use the Web
metadata language, i.e. RDF(S) [11,12], to represent all models and their instances. Our
choice is also justified by the RDF(S) extensibility and flexibility properties that enabled

Modeling User Input and Hypermedia Dynamics in Hera 63

us to extend the language with model specific primitives to achieve the desired power
of expression. As RDF(S) doesn’t impose a strict data typing mechanism it proved to be
very useful in dealing with semistructured (Web) data.

The Hera toolset implements this methodology by offering software for the automatic
generation of hypermedia based on the different Hera models. In order to facilitate the
building (and visualizing) of these models, several Visio solutions were implemented.
Such solution is composed of a stencil that will display all the model shapes, a drawing
template, and a load/export feature providing the RDF(S) serialization of Hera models.
Throughout the paper we use a running example based on the metadata associated to
about 1000 objects from the Rijksmuseum. Figure 1 depicts (in the CM Builder) a part
of the CM for our example, while Figure 2 illustrates the corresponding AM.

Fig. 1. Conceptual model

The conceptual model (CM) describes the structure (schema) of the application
domain data. This structure is described using RDFS in terms of concepts and concept
relationships. A concept has attributes, i.e. properties that refer to some media instances.
For concept relationships we define their cardinalities and their inverse relationships.

The application model (AM) specifies the structure of navigational view over the
application domain data. This structure is also defined using RDFS, where the hyper-
media presentation is described in terms of slices and slice relationships (inspired by
RMM). A slice is a meaningful presentation unit that groups concept attributes (from
CM) that need to be presented together on the user display. There are two types of slice
relationships: compositional relationships (for embedding a slice into another slice) and
navigational relationships (as hyperlink abstractions).

64 G.-J. Houben et al.

Fig. 2. Application model

4 User Input and Hypermedia Dynamics in Hera

In most WIS design methodologies, the only kind of interaction considered is link follow-
ing: the use of the navigation structure is equivalent to wandering through the structure
by clicking on anchors and following links. In our extended approach we go a step further
and consider other forms of user input and dynamics with respect to this hyperstructure.
Therefore, in the next subsections we describe:

– information for navigation dynamics, defined in the navigation data model
– user input controls with associated processing of navigation information
– application model extended with the user input
– architecture of a Hera system

We illustrate this by an example from our museum application that allows the visitor
to buy posters of the paintings in the museum.

4.1 Navigation Data Model

In addition to the data in the aforementioned models CM and AM, interaction requires
a support for creating, storing, and accessing data that emerges while the user interacts
with the system. This support is provided by means of a so-called navigation data model
(NDM). The purpose of this model is to complement the CM with a number of auxiliary
concepts that do not necessarily exist in the CM (although this is the decision of the
designer in concrete applications) and which can be used in the AM when defining the
behavior of the application and its navigation structure.

The NDM of our example is depicted in Figure 3; it consists of the following concepts:

Modeling User Input and Hypermedia Dynamics in Hera 65

– The SelectedPainting concept is a subclass of the Painting concept from the
CM. It represents those paintings which the user selected from the multi-selection
form.

– The Order concept models a single ordered item consisting of a selected painting
(the property includes) and the quantity represented by an Integer.

– The Trolley concept represents a shopping cart containing a set of orders linked by
the property contains.

Trolley

Integer

* * contains
quantity

includes

included_by
Order

contained_by
SelectedPainting

cm:Painting

subClassOf

Fig. 3. Navigation data model

We remark that from the system perspective the concepts in the NDM can be divided
into two groups. The first group essentially represents views over the concepts from the
CM, the second group corresponds to a locally maintained repository. A concept from
the first group can be instantiated only with a subset of instances of a concept existing
in the CM, without the possibility to change the actual content of the data. A concept
from the second group is populated with instances based on the user’s interaction, i.e.
the data is created, updated, and potentially deleted on-the-fly.

The instantiation of both groups of concepts is triggered by a certain action (an
acknowledgement such as pressing the submit button) specified in the AM. Each such
action can have an associated query which either defines the view (the first group) or
specifies what instances should be inserted in the concept’s extent (instantiation). The
data resulting from the query execution is represented in the NDM instance (NDMI) and
stored as state information till the next change (query) occurs1. The AM can refer to the
concepts from NDM as if they were representing real data concepts.

In the example the SelectedPainting concept belongs to the group of view concepts
whereas both the Order and the Trolley are updatable concepts with the values deter-
mined at runtime. This is reflected also in the NDMI depicted in Figure 4 that results from
the user’s desire to buy 3 posters of the selected painting. The instance Painting1 comes
from the CM, i.e. it is not (re)created: what is created however, is the type property as-
sociating it with the SelectedPainting concept. Both instances Order1 and Trolley1
are created during the user’s interaction; they, as well as their properties, are depicted
in bold in Figure 4. Note that for presentation purposes (backwards link generation) we
also generate for every property its inverse.

1 We can see an entire spectrum, going from updating the content to just using state data to help
change the hypermedia structure. In this paper we focus on the state data that helps specifying
the interaction with the navigation structure (since updating the content is possible but outside
presentation generation).

66 G.-J. Houben et al.

Integer

Trolley

* *
included_by

quantity

type type

contained_by
Order1

 3

Trolley1

*
contained_by

* contains
number

includes

included_by
Order

includes contains

SelectedPainting

Painting1

type

Fig. 4. Navigation data model instance

(a) Good input (b) Bad input

Fig. 5. Form with input in browser

4.2 Input Controls

In Figure 5(a) we see from the implementation a slice of a painting selected by the user. It
shows that in this slice the user is provided with a form to enter a quantity that represents
the number of posters of this painting that the user considers to buy. In Figure 5(b) we
see another example where the form is instructed to respond to the user’s attempt to enter
a non-integer value.

In the Hera software we implemented the user input forms using the XForms [13]
standard. As an XForm processor we used formsPlayer [14], a plug-in for Internet Ex-
plorer2. In defining application forms we were inspired by XForms’ clean separation of
data from controls.

For these forms we need primitives in the AM that specify the functional embedding
of the controls in the navigation structure. Figure 6 shows three examples of how we
specify the embedding of controls in AM. In the leftmost example, the SelectForm

2 The small logo labelled “fP " in Figure 5(a) is the formsP layer signature in the implementation.

Modeling User Input and Hypermedia Dynamics in Hera 67

allows to make a choice for multiple items out of a list of paintings. The AM primitive
shows the concept that “owns" the form, in this case Painting; it shows the items that
are displayed in the form, in this case names; finally, it shows the items that are handed
over by the form to the subsequent navigation: the name of the selected painting. In the
middle example the form is similar but allows a choice of exactly one out of multiple
options. The rightmost example shows a form called BuyForm that allows user input,
in this case to enter the quantity of posters considering to buy. The form hands over the
tuple consisting of the entered quantity and the painting name (the painting information
is taken from the form’s context).

SelectPainterForm

s1 cname + biography

cname

Property with range
Painter

submit

Painter

Selection of one from

SelectForm

sn aname

aname

Property with range
Painting

submit

Painting

BuyForm

i quantity

quantity + aname

No input values

submit

Text input field
predefined values predefined values

Multiselection from

Fig. 6. Forms in AM

So we see that for the user input controls we specify in the diagram for the AM the
relevant parameters that make up the form. Thus we describe the relevant functional
aspects of the form, and are able to abstract in the diagram from the actual form code.
Similar to XForms we distinguish between the input controls and their state information
stored in separate models.

Figure 7 presents the models for the forms SelectForm and BuyForm. It consists
of two form types, Form1 defines the type of the SelectForm and Form2 defines the
type of the BuyForm. A Hera form model instance represented in RDF/XML corre-
sponds to the associated XForms model instance. The Integer type matches the XML
Schema [15,16] type xsd:integer and the String type matches the XML Schema type
xsd:string. In case that the user enters a value of a different type than the one specified
in the form model, an XForms implementation (see Figure 5(b)) will immediately react
with an error message (due to its strong type enforcement capabilities).

String

Integer

String

aname

Form

Form1 Form2

aname

quantity

subClassOf subClassOf

Fig. 7. Form models

68 G.-J. Houben et al.

The Stone Bridge Portrait of Maria Trip 3

SelectForm BuyForm

type

Form1

type

Form2

The Stone Bridge

anameaname aname quantity

Fig. 8. Form model instances

aname

SelectedPainting

main

Trolley
Set

Order

BuyForm

i quantity

quantity
aname

aname

SelectedPainting

includes

Order

quantity

Trolley

contains

Set

main

Painting

mainmain

Selected

main

painted_by

description

Technique

cname

Painter

aname

year

tname picture

main

aname

ex_by
Painting

SelectForm

sn aname

Q1

Q2

Fig. 9. Extended application model

Figure 8 describes two possible model instances for the form models given in Fig-
ure 7. In the SelectForm the user selected two paintings and in the BuyForm the user
decided to buy one of these paintings.

4.3 Application Model

With the aid of the aforementioned primitives we are able to express the user input in
our museum example in terms of an (extended) AM. Figure 9 depicts the part of the AM
which captures the user input.

The Technique slice contains a form that lists all paintings exemplifying that partic-
ular technique and offers the user the possibility to select some of these paintings. For the
latter we see in the Technique slice the input control called SelectForm with Painting
as its owning concept (meaning that this form is selecting Painting concepts). We also
see that the form lists the paintings by their aname property and produces for each
selected painting the aname property to identify the selected paintings.

Modeling User Input and Hypermedia Dynamics in Hera 69

After selecting a painting, the outgoing slice navigational relationship denotes that
the form in the Technique slice results in navigation to a slice that represents the set
of selected slices, each represented by their aname, and also in a Trolley that, while
initially empty, will contain the paintings that actually are going to be bought. A Trolley
contains a set of Orders, while an Order represents the request to buy a poster of a
(selected) painting in a certain quantity.

The navigation can go further to the SelectedPainting slice. That slice includes
not only all the properties that represent the painting, but also a form called BuyForm
with a user input control. That control allows the user to specify the quantity (of posters
of this painting to buy). After filling this form the user can navigate via the outgoing
slice relationship to the next slice where the trolley is maintained (and where the user
can decide to select another painting for considering in more detail).

With these slices and slice navigational relationships in the AM we have specified
the entire navigation structure. In the AM diagram we exploit the fact that the function-
ality of the controls is standard, e. g. the selection of n items from a list; therefore the
diagram only indicates which standard control is used. What we also do indicate is the
signature: we give the properties displayed in the form, and the identification of the con-
cepts forwarded via the slice navigational relationship. Note that both slice navigational
relationships that emerge from the forms (Q1 and Q2) are in fact queries. In the query
definition we will use the prefix cm: for concepts/properties coming from the conceptual
model, the prefix ndm: for concepts/properties specified in the navigation data model,
and form: for concepts/properties introduced in the form model.

The RDF model instance of SelectForm is given in Figure 10. The query Q1 creates
a view over painting instances from the CM instance (CMI) which were selected by the
user in SelectForm. This view defines the instances of the ndm:SelectedPainting
class from the NDM.

<Form1 rdf:ID="SelectForm">
<aname>The Stone Bridge</aname>
<aname>Portrait of Maria Trip</aname>

</Form1>

Fig. 10. Model instance for SelectForm

Figure 11 describes this query in the SeRQL [17] notation. The actual form is mod-
elled as an RDF resource with multiple form:aname properties containing the names
(values) of those paintings which were selected by the user.

The RDF model instance of BuyForm is given in Figure 12. The query Q2 associ-
ated with the BuyForm creates a new instance of the NDM concept ndm:Order each
time the user decides to buy a poster of a selected painting.

The SeRQL translation of this query is presented in Figure 13. The form is mod-
eled similarly as before by an RDF resource with two properties form:quantity and
form:aname. Note that the (old) instance of the ndm:Trolley exists outside this form
and is created beforehand during the initialization of the session.

70 G.-J. Houben et al.

CONSTRUCT
{P}<rdf:type>{<ndm:SelectedPainting>}

FROM
{P}<rdf:type>{<cm:Painting>};

<cm:aname>{Paname}
WHERE

Paname IN SELECT Faname
FROM {SF}<form:aname>{Faname},

{SF}<rdf:type>{<form:Form1>},
{SF}<rdf:ID>{Fname}

WHERE Fname = "SelectForm"

Fig. 11. User query Q1

<Form2 rdf:ID="BuyForm">
<aname>The Stone Bridge</aname>
<quantity>3</quantity>

</Form2>

Fig. 12. Model instance for BuyForm

CONSTRUCT
{O}<rdf:type>{<ndm:Order>};

<ndm:quantity>{Fquantity};
<ndm:includes>{Fpainting},

{T}<ndm:contains>{O}
FROM

{T}<rdf:type>{<ndm:Trolley>},
{Fpainting}<cm:aname>{Paname};

<rdf:type>{<ndm:SelectedPainting>},
{BF}<form:quantity>{Fquantity};

<form:aname>{Faname},
{BF}<rdf:type>{<form:Form2>},
{BF}<rdf:ID>{Fname}

WHERE
Paname = Faname AND
Fname = "BuyForm"

Fig. 13. User query Q2

4.4 Architecture

While in the previous subsections we have paid attention to the specification of user
input and hypermedia dynamics and the way in which the AM can support this extended
interaction specification, we now turn to the implementation.As we have indicated earlier
the software of the Hera toolset can generate the hypermedia structure from the given
models. In other work [8] we have sketched the (software) architecture for the case of
normal link following. In Figure 14 we see how we extended the architecture such that
it supports the handling of user input, e. g. via the forms3.

We see that the presentation engine is responsible for serving the generated pre-
sentation to the user. As soon as the engine discovers user input it hands this over to
the form processor that is going to interpret the actual user input (and possibly the
contextual information that explains with what the user input is associated). So, the
form processor can get the quantity of posters to buy and the context that explains

3 We have focussed here on the part of the architecture for extended user interaction, and left out
the architecture description for the rest of the software.

Modeling User Input and Hypermedia Dynamics in Hera 71

cmi2ami
(xsl)

ami2impl
(xsl)

conceptual model
instance
(rdf)

Query/user dependent

Application independent

Application dependent

has instance

navigation data
model
(rdfs)

application model
instance
(rdf) (html,wml,smil)

implementation
presentation

form processor
(java) engine

presentation

navigartion data

create/delete/update

presentation context

has instance has instance

conceptual model
(rdfs)

is used by application model
(rdfs)

is used by is used by

conceptual model
vocabulary
(rdfs) (rdfs)

application model
vocabulary

user form input

user

model instance
(rdf)

Fig. 14. Presentation generation

what the painting is for which the user wants to buy this quantity. The form processor
can produce data that is added to the NDMI. The information from NDMI and CMI is
used together in order to generate/update the AM instance.

As we have indicated in Figure 14 the implementation fits nicely in the RDF-based
approach that we already had for the link following. By adding the additional model in-
formation in RDF(S) we can perfectly manage the additional functionality of explicit user
input resulting in a different hypermedia presentation. We implemented data transfor-
mations (see cmi2ami and ami2impl in the figure) by means of XSLT stylesheets [18].
This was made possible due to the XML serialization of RDF model instances and the
fact that XForms [13] is XML-based. Besides its XML interoperability XForms offers
also device independence, which enables to use the same form on multiple platforms.
X-Smiles [19] provides a good view on how the same XForms will look like on desktop,
PDA, WAP phone etc. As an XSLT processor we used Saxon [20] which implements
XSLT 2.0 and XPath 2.0. In the form processor we employed the Java-based Sesame [21]
implementation of the SeRQL query language [17].

5 Conclusion

By providing new primitives in Hera, e. g. for capturing the user input, it is possible to
considerably extend the class of applications that can be specified. As an example we
mention the use of primitives like the “shopping basket" or “list selection" that are so
typical for applications in the context of services provided via theWeb.Another extension
is the increased support of dynamics. With the new primitives and the navigation data

72 G.-J. Houben et al.

model it has become possible to handle effectively the dynamic adaptivity known from
adaptive hypermedia [22]. For example, for such personalization purposes the navigation
data model can store the necessary user model (both its temporary and persistent parts),
while the application model can specify the necessary adaptation rules. The construction
of the navigation view over data can be further enhanced by existing generic methods
for the development of navigation structures based on user interaction modeling, for
instance [23].

Comparing these new facilities in Hera to other work, we see that the explicit support
of input controls such as forms are not modelled explicitly in OOHDM for example.
It does distinguish mouse-related aspects of user input, but compared to Hera it does
have a more limited support of data-entry by the user. This aspect of user input is a
strong point of WebML, but in fact that facility is more concerned with the content
management of the information system. In Hera this is also supported, at the level of
the conceptual model, but besides of this Hera allows to combine the stored data in the
conceptual model with the auxiliary navigation data stored in the navigation data model.
WebML has, next to the link parameters, also global parameters that can model a “state"
in terms of attribute-value pairs, but Hera goes much further in the specification of this
state information allowing also complex relationships between concepts (represented in
graphs).

The fact that Hera uses RDF(S) representations of the models gives a number of
advantages over other approaches. To start with, it supports the semistructured data that
is so typical for the Web. With RDF(S) Hera offers increased interoperability, e. g. for
the exchange and sharing of user models. It also allows to express complex queries (e. g.
in the design of the dynamics) that make use of the subclassing mechanism. Moreover,
the modeling in Hera of the extended user input inherits good principles from existing
standard like XForms. It chooses to separate in the user input the controls (the presen-
tation aspects) from their models (the data aspects). Opposed to other approaches, Hera
has a concrete implementation based on these standards.

In future we plan to incorporate the possibility of web service invocation within
applications designed using Hera on different levels: on the conceptual (data) level (web
services will act as virtual instances of data concepts), and on the application level (web
services will provide building blocks of slices). Furthermore, we investigate general
properties, mutual relationships, and constraints of Hera models that would help us to
build tools for the automated checking of correctness of the models.

References

1. Isakowitz, T., Bieber, M., Vitali, F.: Web information systems. Communications of the ACM
41 (1998) 78–80

2. Balasubramanian,V., Bieber, M., Isakowitz, T.: A case study in systematic hypermedia design.
Information Systems 26 (2001) 295–320

3. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann (2003)

4. Schwabe, D., Rossi, G.: An object oriented approach to web-based application design. Theory
and Practice of Object Systems 4 (1998) 207–225

Modeling User Input and Hypermedia Dynamics in Hera 73

5. Pastor, O., Fons, J., Pelechano, V.: Oows: A method to develop web applications from
web-oriented conceptual models. In: International Workshop on Web Oriented Software
Technology (IWWOST). (2003) 65–70

6. Koch, N., Kraus, A., Hennicker, R.: The authoring process of the uml-based web engineering
approach. In: First International Workshop on Web-Oriented Software Technology. (2001)

7. Gomez, J., Cachero, C. In: OO-H Method: extending UML to model web interfaces. Idea
Group Publishing (2003) 144–173

8. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering semantic web information
systems in hera. Journal of Web Engineering 2 (2003) 3–26

9. Frasincar, F., Houben, G.J., Vdovjak, R.: Specification framework for engineering adap-
tive web applications. In: The Eleventh International World Wide Web Conference, Web
Engineering Track. (2002) http://www2002.org/CDROM/alternate/682/.

10. Frasincar, F., Houben, G.J.: Hypermedia presentation adaptation on the semantic web. In:
Adaptive Hypermedia and Adaptive Web-Based Systems, Second International Conference,
AH 2002. Volume 2347 of Lecture Notes in Computer Science., Springer (2002) 133–142

11. Brickley, D., Guha, R.V.: Rdf vocabulary description language 1.0: Rdf schema. (W3C
Working Draft 10 October 2003)

12. Lassila, O., Swick, R.R.: Resource description framework (rdf) model and syntax specifica-
tion. (W3C Recommendation 22 February 1999)

13. Dubinko, M., Klotz, L.L., Merrick, R., Raman, T.V.: Xforms 1.0. (W3C Recommendation
14 October 2003)

14. x-port.net Ltd.: (formsPlayer) http://www.formsplayer.com.
15. Biron, P.V., Malhotra, A.: Xml schema part 2: Datatypes. (W3C Recommendation 02 May

2001)
16. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: Xml schema part 1: Structures.

(W3C Recommendation 02 May 2001)
17. Aidministrator Nederland b.v.: (The serql query language)

http://sesame.aidministrator.nl/publications/users/ch05.html.
18. Kay, M.: Xsl transformations (xslt) version 2.0. (W3C Working Draft 12 November 2003)
19. X-Smiles.org et.al.: (X-Smiles) http://www.x-smiles.org.
20. Kay, M.: (Saxon) http://saxon.sourceforge.net.
21. Aidministrator Nederland b.v.: (Sesame) http://sesame.aidministrator.nl.
22. Bra, P.D., Houben, G.J., Wu, H.: Aham: A dexter-based reference model for adaptive hyper-

media. In: The 10th ACM Conference on Hypertext and Hypermedia, ACM (1999) 147–156
23. Schewe, K.D., Thalheim, B.: Modeling interaction and media objects. In: Natural Language

Processing and Information Systems. Volume 1959 of Lecture Notes in Computer Science,
Springer (2001) 313–324

http://www2002.org/CDROM/alternate/682/
http://www.formsplayer.com
http://sesame.aidministrator.nl/publications/users/ch05.html
http://www.x-smiles.org
http://saxon.sourceforge.net
http://sesame.aidministrator.nl

	Introduction
	Related Work
	Hera Methodology
	User Input and Hypermedia Dynamics in Hera
	Navigation Data Model
	Input Controls
	Application Model
	Architecture

	Conclusion

