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Abstract. A method is presented to predict phase relationships be-
tween coupled phase oscillators. As an illustration of how the method
can be applied, a distributed Central Pattern Generator (CPG) model
based on amplitude controlled phase oscillators is presented. Represen-
tative results of numerical integration of the CPG model are presented
to illustrate its excellent properties in terms of transition speeds, robust-
ness and independence on initial conditions. A particularly interesting
feature of the CPG is the possibility to switch between different sta-
ble gaits by varying a single parameter. These characteristics make the
CPG model an interesting solution for the decentralized control of multi-
legged robots. The approach is discussed in the more general framework
of coupled nonlinear systems, and design tools for nonlinear distributed
control schemes applicable to Information Technology and Robotics.

1 Introduction

Information Technology has seen an unprecedented growth in possibilities and
capacity in the second half of the 20th century. Powerful theories have emerged
along with engineering principles that turn these theories into successful real
world applications. Almost all of this progress has been made by adopting a linear
and sequential approach to analyze and design systems. Under this view, each of
the subsystems must be carefully engineered, in order to make them as reliable
as possible. When connecting them, one is striving for a linear interaction as
this allows one to guarantee that the prediction made for interacting subsystems
remains valid. The order of operation, tasks and information flow is usually
sequential as this simplifies the understanding of the mode of operation of the
system and the identification of possible problems.

This is in contrast to how natural systems work. In nature, the subsystems are
usually unreliable, non-uniform, noisy but in huge numbers. The subsystems and
their interaction are of active, nonlinear nature, leading to emergent phenomena
on the system level. Therefore, these systems often work naturally in a parallel
fashion. This tends to give interesting properties to natural systems such as
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robustness, fast computation, high energy efficiency and versatility despite slow,
noisy and unreliable components. In order to be able to construct systems with
similar properties, it is crucial to have adequate theoretical tools for modeling
and designing these complex systems.

In this article, we would like to contribute to this effort in the field of oscilla-
tory systems. We develop a method for predicting phase relationships in systems
of coupled oscillators, and use it to design systems that can switch between well-
defined phase-locked states. In particular, we apply our approach to a concrete
example: the distributed control of locomotion in robots with multiple degrees
of freedom.

2 Designing Biologically Inspired Distributed Controllers
for Walking Robots

Controlling walking in robots has proved to be a difficult engineering challenge.
It requires coordinating multiple degrees of freedom using signals of the right
frequencies, phases, and amplitude. As nature presents very robust and elegant
solutions to that problem, some engineers have turned to biology as a source of
inspiration. At first sight, the animal locomotory system seems to be of enormous
complexity. But, despite the large number of elements taking part in locomotion
control, a few simple common features have been observed by biologists among a
large variety of different species. One of these is the notion of the Central Pattern
Generator (CPG) [5, 6]. A CPG is a network of neurons, capable of producing
oscillatory signals without oscillatory inputs. For locomotion, CPGs are located
in the spine, and receive relatively simple signals from higher centers of the brain
for the control of speed and direction. Sensory feedback is usually not needed to
produce the basic patterns, although it plays an important role in adapting the
patterns to the given situation the animal is faced with.

Another important concept is to classify different walking patterns by the
phase relationships between the individual limbs. This method allows to un-
cover striking similarities between the gait patterns observed in very different
animals. In quadruped locomotion there are three gait patterns that are very
often observed: walk, trot and bound.

Models of different complexity and based on different assumptions have been
devised that can produce the abstract gait patterns [1,3,19–21]. One important
approach is – motivated by the oscillatory limb movements – to use the most
simple mathematical model that produces stable oscillatory behavior as gait
pattern generator for one limb. This mathematical model is a nonlinear oscillator
of some form. This oscillators are then connected together in order to achieve
inter-limb coordination (see [1, 3, 20]).

Except [20, 21] most previous models use nonlinear oscillators that are mo-
tivated by neuronal circuits and that have therefore limit cycles with irregular
shapes. In this contribution, the point is made to use the simplest oscillators
possible as canonical subsystems, in order to have systems that are well under-
stood and are simpler to treat analytically. The canonical subsystem is taken
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out of the class of nonlinear oscillators. In this article, the canonical subsys-
tem which serves as model for the pattern generator of a single limb will be
a simple amplitude controlled phase oscillator (ACPO). By this choice of the
canonical subsystem one does avoid the problems involved with the aforemen-
tioned neuronal oscillators. The analytical treatment leads to a understanding
of the system behavior that allows to apply synthetic approaches to construct
a network with these canonical subsystems with desired global behavior. Fur-
thermore, the network is constructed to have one single parameter by which the
exhibited gait pattern can be controlled. This is a simplification comparing to
previous approaches which usually need several parameters to be changed at the
same time.

The desired properties that our CPG model should exhibit are the following.
First, the CPG model should be independent of initial conditions and robust
against perturbations. Second, the expressed gaits should ideally be controlled
by one simple control variable. This simplifies control, and also replicates the
biological observation that the modulation of a simple electrical stimulation sig-
nal is sufficient to change gait in cats [18]. Finally, when changing the control
variable, the CPG should exhibit fast transitions, ideally within one cycle. The
transitions are a critical moment since the animal can loose its stability if the
transitions are not appropriate. Furthermore, fast transitions are also observed
in nature. To the best of our knowledge, hitherto there exists no simple model
that fulfills all the criteria just stated.

3 Outline

A short outline of our approach will be given as follows. First, the canonical
subsystem will be presented. The notion of the phase will be introduced, since
the phase is crucial to understand synchronization behavior. Then, it will be
shown, that by examining the form of the limit cycle the sensitivity of the phase
on perturbations can be derived. With this result, it will be shown how the phase
relationship between two unidirectionally coupled oscillators can be derived. Out
of the insights gained by that treatment, a method is presented to chose an
arbitrary phase relationship between the two oscillators.

Next, a quadruped walking controller composed of four coupled oscillators
will be constructed. The additional couplings give raise to additional constraints
on the phase relationships. It will be shown by numerical experiments that only
phase relationships that fulfill these constraints are stable. In a next step, it will
be shown how we can exploit these additional constraints to have an continuous
valued parameter that allows us to chose the gait pattern expressed. In the
discussion we show how the results presented in this article fit in the larger
picture and show that our assumptions and simplifications are based on firm
theoretical grounds.
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4 A Distributed Quadruped Central Pattern Generator

4.1 Predicting the Phase Between Two Oscillators

Our goal in this section is to predict how an oscillator reacts to perturbations
by looking at its limit cycle from a geometrical point of view, and to use this
prediction for determining the phase relationship between coupled oscillators.

To start with the concepts needed to discuss nonlinear oscillators, the notion
of a perturbed nonlinear dynamical system is introduced:

q̇ = F (q) + p (1)

where q is the vector of state variables and p a perturbation vector. In the case
the unperturbed system (p = 0) converges to a periodic solution, it is called an
oscillator and the set of q on which it continues to evolve is called the limit cycle
of the system. As described in [15], every oscillator can be transformed into a
phase (θ) – radius (r) coordinate system:

θ̇ = ω0 + pθ (2)

ṙ = Fr(r, θ) + pr (3)

where ω0 is the natural frequency of the (unperturbed) oscillator, Fr is the
dynamical system describing the evolution of r, pθ is the component of the
perturbation acting on the phase and pr is the component of the perturbation
acting in direction of the radius. Perturbations on a stable limit cycle have
different effects on the phase depending on the pθ and pr components. The pθ

component will modify the phase, since the phase is marginally stable [15]. On
the other hand, the pr component, i.e. in the direction of the radius, will be
damped out and will have little effect on the phase.

When two oscillators (F1, F2 with corresponding state vectors q1,q2) are
coupled together (pθ,2 = f(q1)), several types of dynamics can result including
chaos (i.e. no periodic behavior) and phase-coupling. In this article, we are in-
terested in 1:1 phase-locked regimes, i.e. when the oscillators synchronize such
that [15]

θd ≡ θ2 − θ1 ≈ const (4)

Assuming that the system has phase-coupled1, we are now interested in how to
predict θd given two oscillators and their coupling. The general outline of our
method is as follows:

1. From the limit cycle of the perturbed oscillator a sensitivity function Sp(p)
is derived.

2. From the limit cycle of the perturbing system (the other oscillator), the
coupling and the sensitivity function, the perturbation term pθ is calculated.
pθ is usually a function of the phase difference and the phase of the perturbed
system.

1 Determining which conditions are necessary for phase-coupling is out of the scope
of the current article.
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3. From the requirement of phase synchronization (4) a differential equation
(DE) for the phase difference between the perturbed and the perturbing
system (θd) can be derived. This DE is usually a function of the phase
difference and the phase of the perturbed system.

4. By integrating pθ over the evolution of the perturbed limit cycle the per-
turbation of the phase that stays in the system is computed. This allows to
derive a DE that only depends on θd. By help of that DE, the fixed points
for θd can be found.

5. By applying a stability analysis of the DE, the stable and unstable fixed
points can be distinguished.

When looking at the phase space representation of a nonlinear dynamical system
we can conclude that changes in the derivative of phase can only stem from
components of the perturbation that are in direction of θ, i.e. tangential to the
limit cycle. The unit vector tangential to the limit cycle is

eθ =
q̇

|q̇|
(5)

Therefore, the effective perturbation on the phase is

pθ = p · eθ (6)

The derivative of the phase becomes

θ̇ = ω0 + p · eθ (7)

So we found the sensitivity of the phase on perturbations:

Sp(p)
.
=

pθ

|p|
=

p

|p|
· eθ =

p

|p|
·

q̇

|q̇|
(8)

With (7) we found an explicit form for the time evolution of θ. By using the
definition in (4) we can derive a differential equation for θd. We require synchro-
nization after some transient phase which is not discussed here:

∫ t2

t1

θ̇ddt = 0 (9)

On the other hand
θ̇d = θ̇2 − θ̇1 (10)

θ̇d = ω0,2 + pθ2
− (ω0,1 + pθ1

) (11)

This is usually a function of θd and θ2. As we are mainly interested in the steady
state of the system, we integrate it over time. The integration over time is done
implicitly by integration over θ2 (which increases monotonically with time), after
the system reached the steady phase locked state. We assume the criterion for
phase locking to be fulfilled at θ2 = Θ0, and that the system subsequently is
in the steady phase locked state for θ2 > Θ0. From (9) we see that the integral
should be zero

θ̇d,res = lim
Θ→∞

∫ Θ

Θ0

θ̇ddθ2 =

∞∑

n=1

∫ 2nπ+Θ0

2(n−1)π+Θ0

θ̇ddθ2 ≡ 0 (12)
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We now have outlined all the steps needed to arrive with a differential equation
for θd. In the following, we will show the analysis of the phase oscillator that
will be used to construct the CPG.

4.2 The Amplitude Controlled Phase Oscillator

As outlined before, the CPG model will be constructed of simple canonical sub-
systems. In this case the subsystems are an amplitude controlled phase oscillator
(ACPO). The ACPO is defined by the following dynamical system:

[θ̇, ṙ]T = [ω,−g(r − r0)]
T (13)

The description of this system can be transformed into an equivalent description
in the Cartesian coordinate system (x = r cos θ,y = r sin θ):

q̇ =

[
ẋ

ẏ

]

=

[

g

(

r0
√

x2 + y2
− 1

)

x − yω, g

(

r0
√

x2 + y2
− 1

)

y + xω

]T

(14)

A short hand notation of this system is introduced: q̇ = FACPO(q), where q =
[x, y]T is the state vector of the system. This system shows a limit cycle that has
the form of a perfect circle with radius r0 (Fig. 1(a)). The intrinsic frequency of
the oscillator is ω.
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Fig. 1. a) Limit cycle of the amplitude controlled phase oscillator for r0 = 1, g =
10, ω = 2π[rads−1]. The arrows show the flow q̇ defined by the FACPO (13). b) This
figure shows the phase difference established for the following values of ωd = −0.0042,
λ = 2 and g = 1000. With help of (23) predicted value is θd = 0.2493 (dashed line). The
value from numerical integration is shown with the solid line (mean over t = [10, 20] is
θd = 0.2554). c) The structure of the ACPO-CPG. Note that the connections illustrated
by arrows involve rotation matrices (compare to text).

4.3 Two Coupled ACPO

We introduce now a system of two ACPO where one ACPO is coupled unidirec-
tionally to the other one.

q̇1 = FACPO(q1) (15)

q̇2 = FACPO(q2) + pc(q1) (16)
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where q1 = [x1, y1], q2 = [x2, y2]. Next will be shown, how we can derive the
phase relationship θd from the knowledge of the shape of the limit cycle and
pc. We will do this in an analytical way to illustrate how the method works.
However, the method is not limited to cases where we know the form of the
limit cycle by analytical derivation, but also works for cases where we get the
form of the limit cycle and fc by numerical integration. To illustrate how the
method works, consider the simple connection scheme:

pc = λ[0, x1]
T (17)

In words: State variable x from ACPO 1 is coupled on the derivative of state y

of ACPO 2 with a coupling constant λ.

1. We derive

eθ2
=

q̇2

|q̇2|
= [− sin(θ2), cos(θ2)]

T (18)

2.
pc = λ[0, x1]

T = λ[0, r cos(θ1)]
T (19)

From (6) we get

pθ2
= λr[0, cos(θ1)]

T
· [− sin(θ2), cos(θ2)]

T = λr
1

2
[cos(θd) + cos(2θ2 − θd)] (20)

3. Using (10) and (20)

θ̇d = ω0,2 − ω0,1 + λr
1

2
[cos(θd) + cos(2θ2 − θd)] (21)

4. From (12) and (21) we get

θ̇d,res =

∫ 2π

0

θ̇ddθ2 =

∫ 2π

0

[
ω0,2 − ω0,1
︸ ︷︷ ︸

ωd

+λr
1

2
[cos(θd)
︸ ︷︷ ︸

const

+ cos(2θ2 − θd)
︸ ︷︷ ︸

periodic, zero mean

]
]
dθ2

= 2πωd + λrπ cos(θd) ≡ 0 (22)

From this equation we can calculate the (averaged) fixed points for θd

θd

∣
∣
∣
θ̇d,res≡0

= arccos

(

−
2ωd

λr

)

(23)

We note that we need | 2ωd

λr
| < 1 for this particular system to phase-lock (i.e.

for (23) to have equilibrium points). Since we assume steady phase locked
state, r ≈ r0 can be assumed. We are interested in the stable fixed points,
since they determine to which phase relationship the system will evolve. For
example, for ωd = 0, we find solutions at π

2 + nπ, n ∈ Z0.
5. The stability of the fixed points is determined by the one-dimensional Jaco-

bian for θ which can be obtained by differentiating (22)

∂θ̇d

∂θd

= −λrπ sin(θd) (24)
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From this equation we can calculate that ∂θ̇d

∂θd
= −λr < 0 for θd = π

2 + 2nπ

and ∂θ̇d

∂θd
= λr > 0 for 3π

2 + 2n (for λ > 0, opposite if λ < 0). Therefore, for
ωd = 0 only phase differences θd = π

2 + 2nπ are stable fixed points.

Using (23) we can therefore determine the phase difference to which the two
oscillators evolve when coupled, under the assumption that they phase-lock. For
ωd 6= 0 the fixed points for θd have slightly different values and are dependent on
the choice of r0, as can be seen from (23). In Fig. 1(b) the results for numerical
integration of the system treated above are presented for ωd 6= 0 and compared
to the value predicted by the analytical treatment.

4.4 Method for Choosing Arbitrary θd

Based on the insight gained in the previous section a method will be presented
to chose arbitrary θd. Therefore, a more general coupling scheme is introduced:

p2 = λPq1 (25)

where P is the coupling matrix. In the aforementioned example (17) it would be

P =

(
0 0
1 0

)

(26)

We define a rotation matrix

R =

(
cos θR − sin θR

sin θR cos θR

)

(27)

By taking q1,r = Rq1, we get a vector that is equivalent to the vector q1(θ′1),
θ′1 = θ1 + θr. In other words, if we take q1,r to perturb the second oscillator the
effect is the same as if the first oscillator would be in state θ′

1. Thus,

p2 = λPq1,r = λPRq1 = λr[0, cos θ1 cos θR − sin θ1 sin θR]T (28)

Using the same approach as in (20)-(23) we get

θ̇d,res = 2πωd + λrπ [cos θd cos θR − sin θd sin θR] ≡ 0 (29)

By exploiting the trigonometric addition theorems this transforms into

θd

∣
∣
∣
θ̇d,res≡0

= arccos

(

−
2ωd

λr

)

− θR (30)

where again r ≈ r0 is the steady state behavior. As can be seen θd is directly
proportional to the rotation angle θR. Using (30) we can design couplings be-
tween the oscillators such as to obtain arbitrary phase difference between them.
Note that the coupling does not need to be unidirectional. It is straight forward
to introduce bidirectional coupling by changing (15) to

q̇1 = FACPO(q1) + pc(q2) (31)

and working out the math as outlined above. Equivalently to (28), a second
rotation matrix P2 is introduced. Therefore, a third additive term in (29) arises.
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4.5 The ACPO CPG

The three most common gaits observed in quadrupeds are walk, trot and bound.
To ease the notation, the legs of the quadruped are numbered in the following
way: left front 1, left hind 2, right hind 3, right front 4 (cf. Fig. 1(c)). If we
define θd,ij = θi − θj as the difference between the phase of limb i and j then,
the gaits can be classified according to Table 1(a) (the phases are normalized:
θ = 1 corresponds to the full circle).

A quadruped CPG is constructed from four fully connected ACPO, i.e. all
oscillators are coupled bidirectionally to every other one (see Fig. 1(c)). The
coupling matrix is of the form

P =

(
1 0
0 1

)

(32)

and λ = 2 for all connections. A ring structure basically is enough to build the
CPG, cf. [1, 16]. However, the additional, redundant connections increase the
speed of the gait transitions.

Let us outline how we can design specific gait patterns into this network. First
of all, for this gait pattern the phase difference between the pairs of oscillators
that are connected need to be known. We can derive these phase differences by
help of Table 1(a). Then, for each connection a corresponding rotation matrix
can be derived. If we take as an example the walk pattern we see that we come up
with four different rotation matrices (θd = ±0.25±0.5) for the 12 connections. In
order to be able to change from one gait pattern to another we make the rotation
matrices dependent on a parameter Pgait and we exploit the fact that R(θd) =
R−1(−θd). By analysis of the requirements needed to generate walk, trot and
bound we come up with three parameter sets of θR (cf. Table 1(b)). Instead

Table 1. (a) The table shows the phase differences corresponding to the three most
common gaits observed in quadrupeds. (b) The table shows the 3 different rotation
angles that are needed in the construction of the ACPO-CPG. (c) Connection scheme
used for the ACPO-CPG.

θd,12 θd,13 θd,14

walk 0.75 0.25 0.5
trot 0.5 0.0 0.5
bound 0.5 0.5 0.0

(a)

θR,1 θR,2 θR,3

walk 0.25 0.25 0.5
trot 0.5 0.0 0.5
bound 0.5 0.5 0.0

(b)
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of fixing the θd we can define continuous functions that provide these values
when a parameter Pgait is increased. We chose the functions given in 33-35. This
allows to chose the gait pattern by the single continuous valued parameter Pgait.
The three corresponding rotation matrices are used in the connection scheme as
presented in Table 1(c) (using the short notation Ri = R(θR,i)).
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Fig. 2. θR,1,2,3 as a function of the chosen gait parameter. Pgait = 0 corresponds to the
walk pattern, Pgait = 1 to trot, and Pgait = 2 to the bound. Solid line: θR,1, dashed line:
θR,2, dash-dotted line: θR,3. The dots correspond to values that correspond exactly to
the values for the different gait patterns. However, also for settings quite far from these
points the gait patterns are stable.

4.6 Simulation Results of the ACPO-CPG

In the following, the results of numerical integration of the ACPO-CPG are pre-
sented. The system was integrated with a variable step Runge-Kutta solver [11].
The tolerance settings were Trel = 10−3 and Tabs = 10−6. The initial conditions
were always chosen randomly in θ1,2,3,4 ∈ [−1, 1]. Because the system is robust
against random initial conditions, we do not present the transient behavior at
the beginning of the integration procedure but rather focus on the more inter-
esting phenomena during gait transitions. In Fig. 3, all possible transitions are
shown. The time t = 0 always corresponds to the time when the gait control
parameter Pgait is changed abruptly from one setting to another. Noteworthy
here is that not all transitions are made with the same ease. Especially the tran-
sitions from walk to bound and back take up to about 1.5 s to begin. Also the
transient time is higher for these transitions. Furthermore, we have an asymme-
try in transitions. The transitions from walk to bound is faster then from bound
to walk. Interestingly, Kelso et al. [9] have shown the same effects when human
subjects are asked to consciously switch from one coordination task to another.
The authors also establish the link to the physical theories of complex systems
that will be addressed in the discussion.

Random fluctuations play a very important role in synergetic systems. It
turns out that they are fundamental to any pattern formation process. Further-
more, we want our model to be robust against noise. Therefore, we use a noisy
model to test the influences of noise. For that the differential equation of the
system gets transformed into a stochastic difference equation

∆q = (1 + ξ)F (q)∆t (36)

where ξ is a uniformly distributed random number in [-0.1,0.1]. The stochastic
difference equation was then integrated using the Euler method with a time-step
of ∆t = 10−4 s. Representatively, for the illustration of the effect of the noise,
the transition from bound to walk has been chosen, because from the above
presented results it is known to be slowest. In Fig. 4(a) the results are presented
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Fig. 3. Results of the numerical integration of the ACPO CPG. a) Trajectories of the
ACPO-CPG when switching from walk to trot to bound and the corresponding phase
difference plots (θd,ij). Dashed line: θd,12, solid line: θd,13, dash-dotted line: θd,14. The
upper figure presents the oscillatory activity (xi), while the lower figure shows the
corresponding phase difference evolution. b) phase difference plots for walk to trot
(upper figure) and trot to walk (lower figure). The dashed vertical line indicates the
time at which Pgait is changed. c) walk to bound and bound to walk d) trot to bound
and bound to trot.
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and as can be seen the begin of the transition occurs about one second earlier,
while the steady states are basically not affected by that noise level. Thus, our
system is not only robust against noise, but even benefits from it. Such noise
induced improvements has been shown in a variety of systems [4] and are now
commonly called stochastic resonance.

Finally, in order to illustrate one significant advantage of dynamical systems
based CPG models for controlling walking over other methods (e.g. trajectory
replay), we present the behavior of the model in case of an external disturbance
in Figs. 4(b) and 4(c).
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Fig. 4. a) Further experiments on the influence of perturbations on the transition
speed. Representatively the bound to walk transitions is chosen which is the slowest.
Noise is added during the integration procedure (see text). As can be observed the
transition is initiated about 1 s earlier then in the case without noise. b), c) To illustrate
the robustness against perturbation that is inherently built in the structurally stable
dynamical system model of the CPG we present the case when the state variable for the
left hind leg gets fixed for 0.2 s and then released again during walk. The two vertical
lines show the time when the legs is fixed and released again. As can be observed, the
leg increases in speed in order to catch up with the other legs to fulfill the requirements
of the gait pattern. Within less than 0.5 s, the normal gait is re-established.

5 Discussion

The ACPO CPG. We have presented a model for a quadruped central pattern
generator. The model is of distributed nature and shows fast transitions and
only one global attractor. It is robust against noise and perturbations. By one
continuous variable we have the control over the chosen gait patterns. From the
algorithmic point of view the model is very simple. Considering all these proper-
ties, we conclude that the ACPO-CPG is a viable candidate for the implemen-
tation in a robot. The presented CPG is however only applicable to interlimb
coordination. Additional oscillators are needed for intralimb coordination (i.e.
coordinating different DOFs at the hip, knee, and ankle). However, the presented
methodology is applicable for these problems as well.

The choice of the subsystem in form of simple oscillators [1,3,19], and more
specifically phase oscillators [20, 21] has been presented before. However, we
motivate our choice with concepts from physics of complex systems rather then
base the model on simplified cell models. That this abstraction implied by the
choice of simple oscillators makes sense and is based on firm theoretical grounds
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can be seen when looking on the observations made by biologists from a complex
systems perspective.

Modeling in the complex systems framework. We argue that these observa-
tions (i.e. low dimensional dynamics and autonomous oscillatory behavior of
nerve centers) and the resulting abstract concepts (i.e. CPG) are not a coinci-
dence, but rather a necessity. The reason for that necessity can be understood
by physical theories of complex systems developed over the last few decades.
These theories deal with systems that are constructed from active subsystems.
Understanding the concepts covered by these theories and gaining the insight
that modeling controllers for walking robots is an example of a much broader
class of problems, we can turn the physical theories into a design methodol-
ogy that allows us to decide which features need to be preserved in our model
and which one can be abstracted away in order to arrive with a controller that
satisfies given global properties.

Haken [7] puts the argument forward that a large ensemble of interacting sys-
tems normally exhibits low-dimensional dynamics under very broad conditions.
While others have formulated parts of the ideas before it was his contribution
to formulate an integrated theory of such systems, which he called synergetic

systems. He enhances the concept of the order-parameter introduced by Lan-
dau [10]. The order parameters are identified as slowly evolving variables in a
dynamical system (e.g. in the laser, a prime example of self-organizing systems,
the order-parameter is the field strength of the laser light). The order-parameters
turn out to be the instable modes of that system and their number remains usu-
ally a very few comparing to the full state space of the system. The key point
is that all the other variables of the system follow the order parameters, and,
on the other hand, the activity of the full system influences the evolution of the
order parameters. Haken formulated that fact in the slaving principle. One can
build hierarchies of systems where the order parameters of one subsystem con-
stitute the subsystems for the next hierarchy level. In the case of the locomotory
system the order parameters of interest are the phase relationships between the
limbs. The scales of the order parameters and the subsystems differ in about
three orders of magnitude (neurons: ∼ 10−3 s – limb activity ∼ 100 s). The dif-
ferent scales are typical for synergetic systems. Furthermore, it has been shown
theoretically [7] and experimentally [14], that the behavior of the order param-
eters is very independent of the exact nature of the subsystems. Even more, at
the order parameter level, completely new phenomena can occur, which are not
foreseeable at the subsystem level2.

Conclusion of the complex systems perspective. Considering the aforemen-
tioned facts, it gets clear that there are two approaches of modeling the behavior
of such systems. Both of them have strengths and weaknesses. The first method
is to derive models for the subsystems and couple them to come up with the
complete model. This is an important approach, especially if one is interested
in the exact behavior of the real system being modeled and the influence of all
the parameters (for an example see [13]). However, especially when the chosen

2 aka. emergence, network effects, self-organization
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level of description is very detailed, this method is rather tedious, it leads to
complicated models that are normally computationally intensive and possess a
large number of parameters. One has to have an enormous knowledge of the
details of the subsystems which in reality is often missing. Especially, if one is
successful with this modeling approach, one will rediscover the aforementioned
system hierarchies. The other approach is to focus on the order-parameter level,
if one is mainly interested in mimicking the overall system behavior. It is an phe-
nomenological approach. The advantage here, is that one is freed from a huge
amount of parameters, the systems are usually simple and easy to simulate. Yet,
the physics guarantees that we still catch the important aspect of the system
behavior, namely the behavior of the order-parameters (i.e. models for human
inter-limb coordination see [8,9]). The model derived by this approach typically
consists of one low-dimensional dynamical system describing the behavior of the
order parameters (e.g. quadruped CPG see [16]). In this article we are following
the second approach.

As we are free to chose which level of the system hierarchy we would like
to model in order to arrive with an usable model for a robotic application, a
good approach is to keep a distributed model consisting of a few subsystems.
The subsystems themselves are still models of complex systems. Therefore, they
model order-parameter behavior. Naturally, one splits up the whole system into
subsystems, where the system being modeled also shows some modularization
(i.e. Body segments, Limbs, ...) or where we identify parts that lend themselves
to easy measurement of the subsystem behavior. In case of the walking con-
troller, the order parameters are the population activity of the motoneurons for
one limb. The population activity serves to drive the muscles. The subsystems
are the single neurons of the limb CPG, the muscle cells and all the other nu-
merous parts that form the neuro-mechanical system. Because we are at the
order-parameter level of description, it gets clear that there is no need to use
models that are motivated by observations made on the single neuron in order to
model the behavior on the CPG level. Another motivation for the choice of the
canonical subsystem in form of a simple phase oscillator is the fact that from an
mathematical viewpoint all limit cycle systems belong to the same universality
class [2]. I.e. effects observed in one limit cycle system are also to be expected in
another limit cycle system (However, in practical cases, the relationship is often
enough only accessible in a qualitative manner. Even, if, from the mathematical
viewpoint, a quantitative relationship exists). Furthermore, with this method we
arrive with a model that does not show certain drawbacks of earlier models such
as dependence on initial conditions, slow and lacking transitions, or periodic
driving and prove therefore that our modeling approach is viable. Most proba-
bly the most fundamental advantage for our goal of controlling robots is that
by choosing the simple oscillator model, we can predict the phase relationships
with more ease and to a certain extent by analytical methods.

The level of abstraction of the ACPO-CPG corresponds to the order param-
eter description of dynamical systems. At this level of description a very simple
model can be derived as shown by [16]. The model presented by Schöner et al.
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however is not of distributed nature anymore. As mentioned before, one inter-
esting property of synergetic systems is their distributed nature. In a robot one
would like to have simple distributed control for low level tasks such has locomo-
tion, thus allowing a central processor to use its power to address more involved
tasks, such as path planning, communication and the like. Therefore, in this
contribution we constructed a model with a more complex structure, that lends
itself for a distributed implementation in a robot built of uniform elements.

Outlook and future work. From a more theoretical point of view it will be
interesting to do more rigorous analysis of the model, e.g. bifurcation analysis.
Furthermore, it will be interesting to take a closer look at the improvement by
noise, and compare the observation to other examples and theoretical considera-
tions about stochastic resonance. It is known that there exists a certain optimal
level of noise for a given system. This optimum remains to be found.

Since the characteristics of coupled dynamical systems, that we exploited to
construct the ACPO-CPG, are universal characteristics that can be observed in
many real world systems such as semiconductors [14], analog electronics [12],
chemical reactions [17] and many more, one is basically able to implement this
models on top of a variety of substrates. The choice in nature are neurons, but for
applications we are not restricted to this substrate. The substrate of choice for
implementation in the long term will be the one where we have the appropriate
control over the characteristic time and length scales on one hand, and suitable
operation conditions (temperature, field strengths, power consumption) on the
other hand. In addition to that, it should be cheap and simple to manufacture.
Therefore, to find such suitable substrates and the way of implementing the
systems on top of them, a lot of experiments have to be done.

Conclusions. In recent years a lot of progress has been made in understand-
ing complex systems from a theoretic point of view. Moreover, advances in tech-
nology allows us to implement and partially simulate systems of a complexity
hitherto impossible. Yet, for applications, these powerful concepts are not yet
exploited in a systematic fashion. Researchers in different fields often make im-
plicit use of the concepts contained in the theory of complex systems when they
make investigations and observations, yet, sometimes make assumptions that are
not well aligned with this theory. In the authors opinion, it is important and one
of the grand challenges for the next decades to transform the knowledge into
design principles and collect experiences in order to harness the full power of ac-
tive distributed systems. The research presented here, belongs to a more general
effort that aims at using theories of coupled dynamical systems in the solution
of difficult engineering problems and tries to devise new design principles. The
possible fields of application are numerous - network engineering, multichannel
information transmission, sensor networks and robotics just to name a few.
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