
A.J. Ijspeert et al. (Eds.): BioADIT 2004, LNCS 3141, pp. 440–455, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Naïve Algorithms for Keyphrase Extraction and Text
Summarization from a Single Document Inspired by the

Protein Biosynthesis Process

Daniel Gayo-Avello, Darío Álvarez-Gutiérrez, and José Gayo-Avello

Department of Informatics, University of Oviedo, Calvo Sotelo s/n 33007 Oviedo (SPAIN)
Tel. +34 985 10 50 94 / Fax +34 985 10 33 54

dani@lsi.uniovi.es

Abstract. Keywords are a simple way of describing a document, giving the
reader some clues about its contents. However, sometimes they only categorize
the text into a topic being more useful a summary. Keywords and abstracts are
common in scientific and technical literature but most of the documents
available (e.g., web pages) lack such help, so automatic keyword extraction and
summarization tools are fundamental to fight against the “information over-
load” and improve the users’ experience. Therefore, this paper describes a new
technique to obtain keyphrases and summaries from a single document. With
this technique, inspired by the process of protein biosynthesis, a sort of “docu-
ment DNA” can be extracted and translated into a “significance protein” which
both produces a set of keyphrases and acts on the document highlighting the
most relevant passages. These ideas have been implemented into a prototype,
publicly available in the Web, which has obtained really promising results.

1 Introduction

As the saying goes, “Time is Money”, “Information is Power”. So, most of us want
to earn the most the power (i.e., information or knowledge) at the lowest possible cost
(i.e., as soon as possible and with relatively little effort). To accomplish this, many
communities make use of guidelines to write “easy-to-read” documents. These
guidelines can be as simple as attaching an abstract and/or a list of keywords at the
beginning of each document.

However, most of the documents available on a daily-basis have neither abstract
nor keywords. Examples of these “time consuming” documents are e-mail messages,
web pages, newsgroup posts, etc. On the other hand, such documents are provided by
digital means, so, at least, they are suitable for automatic processing. In fact, there are
plenty and very different Natural Language Processing (NLP) techniques to help us to
sort through this information overload (e.g., language identification [1][2], document
clustering [3][4], keyword extraction [5][6] or text summarization [7]).

Some of these techniques require human supervision [5] while others don’t
[1-4][6][7]. Several don’t require training [6] but others do [1-5][7]. Some rely only

Naïve Algorithms for Keyphrase Extraction and Text Summarization 441

on statistical information [1-4][6] and others employ complex linguistic data [5][7]. A
few use only one document [6] while others need a document corpus [1-5][7].

The question becomes wouldn’t it be great to use only one technique to carry out
several of these tasks? Ideally, it should be extremely simple (i.e., it should rely only
on free text instead of linguistic data), fully automatic (i.e., it should need neither
human supervision nor ad hoc heuristics) and scalable (i.e., feasible with both single
documents –a web page– and document corpora –web sites).

Biology has inspired many computational techniques that have proven feasible and
reliable (e.g., genetic algorithms or neural and immune networks). So, trying to find
such a technique we also turned to biology. Among living beings each individual is
defined by its genome, which is composed of chromosomes, which are divided into
genes and then constructed upon genetic bases. Likewise, if we consider a document
as an individual from a population –a document corpus– we can see that documents
are composed of passages, divided into sentences built upon words. Following this
analogy, we hypothesized that two documents written in the same language or
semantically related would show similar “document genomes”. This paper will
explain how these document genomes can be extracted and translated into
“significance proteins” (i.e., keywords, keyphrases and summaries).

2 Biological Definitions

Since our proposal is heavily inspired by biological phenomena some definitions are
provided to clarify various aspects of the techniques and algorithms described later in
this paper.

Definition 1: Nitrogenous bases
Molecules involved in the pairing up of DNA and RNA strands. They include adenine
(A), thymine (T), cytosine (C), guanine (G) and uracil (U). Uracil only exists in RNA
replacing thymine which is only present in DNA. Adenine, cytosine and guanine are
common to both DNA and RNA. The possible base pairs are AT or AU and GC.

Definition 2: Nucleotide
A nucleotide is an organic molecule composed of a nitrogenous base, a pentose sugar
(deoxyribose in DNA or ribose in RNA), and a phosphate or polyphosphate group.
Nucleotides are the monomers of nucleic acids.

Definition 3: Deoxyribonucleic acid (DNA)
DNA is a polymer and the main chemical component of chromosomes. It is usually
the basis of heredity because parents transmit copied portions of their own DNA to
offspring during reproduction propagating their traits. DNA is a pair of chains of
nucleotides entwined into a “double helix”. In this double helix, two strands of DNA
come together through complementary pairing of the nucleotides’ bases, because of
this, DNA is usually represented as a unique text string (e.g. …GGCGATACATG…)
which has been of primary importance for the development of bioinformatics.

442 D. Gayo-Avello, D. Álvarez-Gutiérrez, and J. Gayo-Avello

Definition 4: Ribonucleic acid (RNA)
RNA is, as DNA, a nucleic acid although slightly different from DNA, both in
structure and function. As it has been explained above, RNA is composed of the same
bases as DNA except for uracil. The RNA structural differences give the molecule
greater catalytic versatility and help it to perform its many roles in the transmission of
genetic information from DNA (by transcription) and into protein (by translation).

Definition 5: Transcription
The process of transcribing genetic information from DNA into a messenger RNA
molecule using the DNA molecule as a template. Transcription is the prior step before
protein biosynthesis.

Definition 6: Messenger RNA (mRNA)
mRNA is transcribed directly from a gene’s DNA and carries the code for a particular
protein from the nucleus to a ribosome in the cytoplasm and acts as a template for the
formation of that protein. mRNA is a single-stranded molecule.

Definition 7: Transfer RNA (tRNA)
A relatively small RNA molecule that transfers a particular amino acid to a growing
polypeptide chain at the ribosomal site during translation.

Definition 8: Amino acid
Amino acids are the constituent molecules of proteins. There are 20 amino acids
directly expressed by means of DNA. However, a protein can contain amino acids
that differ from these twenty; if this is the case, the different amino acid has been
transformed after translation.

Definition 9: Protein
Proteins are polymers consisting of one or more strings of amino acids. Each string
folds into a 3D structure, existing of four different levels of protein structure.
However, for our purposes, we are interested in only two of them: (1) Primary struc-
ture: the linear amino acid sequence forming a polypeptide. (2) Quaternary structure:
the association of multiple polypeptide subunits to form a functional protein. The pri-
mary structure is made during the translation and the higher structures are reached
during the protein folding process. Proteins are primary components of living orga-
nisms; they can be used as hormones, enzymes, structural elements or even to obtain
energy.

Definition 10: Ribosome
A ribosome is a structure composed of RNA (ribosomal RNA or rRNA) and proteins
that can translate mRNA into a polypeptide chain (usually a protein). Ribosomes are
found in the cytoplasm of all cells and consist of two subunits.

Naïve Algorithms for Keyphrase Extraction and Text Summarization 443

Definition 11: Translation or protein synthesis
Protein synthesis involves three steps: (1) preparing tRNA molecules for use by the
ribosome; (2) attaching the ribosome to the mRNA; and (3) the initiation, elongation
and termination phases of translation, where an amino acid chain forming the primary
structure of a protein is constructed. The process of translation will be described with
more detail in the next section.

Definition 12: Bioinformatics
Information technology as applied to life sciences. For instance, the techniques used
for the collection, storage, retrieval, data mining and analysis of genomic data. Other
applications include sequence alignment, protein structure prediction, etc.

3 Synthesis, Folding, and Functions of Proteins

As defined above, DNA is capable of encoding 20 different types of amino acids;
these are the basic components of proteins which play essential roles in almost every
biological process. Therefore, cells need to produce proteins using their DNA as a
kind of “blueprint”.

However, DNA is not very chemically versatile and, moreover, too valuable to
work directly on top of it to produce the needed proteins. Because of this, to
synthesize any protein the cell must first copy a portion of its DNA (i.e., the gene
encoding the protein) into a single-stranded molecule of mRNA which is sent to the
cytoplasm. There, it will be used by ribosomes as a template to compose the final
protein. This prior step is called transcription while the process to obtain a protein
from the mRNA molecule is called protein synthesis or translation.

As it will be shown later in this paper, our proposal is freely inspired by the
information encoding capabilities of DNA, the transcription of DNA into mRNA, its
translation into the primary structure of a protein and the folding of this protein to
reach its fully functional form. Therefore, the following paragraphs offer a more
thorough description of the translation and folding processes.

3.1 The Translation Process

Protein synthesis begins with the attachment of the small ribosomal subunit to the
mRNA string. Then the initiator tRNA molecule binds to the start codon1 AUG. This
step is named initiation (see Fig. 1) and after it begins the elongation phase.

The elongation phase starts when the large ribosomal subunit is attracted by the
initiator tRNA and binds to the small subunit completing the ribosome (see Fig. 2).
During this phase the ribosome moves along the mRNA string one codon at a time.
Each of these codons in the mRNA has a complementary anticodon in tRNA
molecules which, as we already know, carry amino acids. This way the polypeptide

1 A codon is a sequence of three adjacent nucleotides in mRNA determining the binding of a

particular amino acid (carried by a tRNA molecule) or the signal to stop the translation.

444 D. Gayo-Avello, D. Álvarez-Gutiérrez, and J. Gayo-Avello

sequence, dictated by DNA and transmitted by mRNA continues growing (see Fig. 3)
until the stop codon (UAA, UAG or UGA) is reached by the ribosome. At that moment
the translation process enters the termination phase.

Fig. 1. Initiation of the translation process. Fig. 2. Start of the elongation phase.

When the ribosome reaches the stop codon no tRNA is attracted, the ribosome
dissociates and both ribosomal subunits leave the mRNA. The product of this process
is a polypeptide, that is, the primary structure of a protein (see Fig. 4).

Fig. 3. End of the elongation phase. Fig. 4. Termination of the translation process.

3.2 Protein Folding and Functions

As it was explained in Definition 9, proteins must fold into a 3D structure to perform
their many functions. All of the information required to reach the final folded form is
contained in the primary structure since proteins fold into low energy configurations
depending on the interactions between their constituent amino acids. Predicting
protein folding from the amino acid sequence has been a major problem for over a
decade and many techniques have been proposed (e.g., LINUS [8] or
folding@home2[9]).

2 http://www.stanford.edu/group/pandegroup/folding

Naïve Algorithms for Keyphrase Extraction and Text Summarization 445

Many of the ideas behind these techniques such as maximization of entropy during
the folding process [8] have greatly influenced some of the algorithms described later
in this paper. The functions of some proteins, such as hormones and enzymes, were
also especially influential since we were interested not only in obtaining “document
proteins” (i.e., keyphrases) but also in the possibility of such “proteins” having active
effects on the original document to achieve automatic summaries.

4 A DNA for Natural Language?

Now that we have broadly described the main biological phenomena in which our
techniques have rooted in, we can more clearly define our proposal. Let’s start with
the concept of “document genome”. To see what a “document genome” looks like
let’s consider an extremely short text shown in Fig. 5.

The rain in Spain stays
mainly in the plain.

ain-(3) -in-(2) … he-p(1)
e-pl(1) -pla(1) plai(1) lain(1)

Fig. 5. An example document. Fig. 6. Partial list of 4-grams for the previous
document. It is reverse-ordered by simple frequency
and blanks have been replaced by hyphens.

A common technique to analyze texts is based on the use of n-grams which are
simply sequences of length n. They can include either words or characters and the
items do not need to be contiguous. However, frequently the term n-gram refers to
slices of adjoining n characters. For the purposes of this paper we will use this
definition of n-gram throughout. Moreover, while it is common when working with
n-grams to obtain a variety of different lengths, our document DNA will use fixed
length n-grams3, usually 4-grams or 5-grams (see Fig. 6).

By comparing the “most frequent” n-grams in two different sequences it is possible
to perform language identification and, to some extent, document categorization.
However, these “most frequent” n-grams are usually obtained by inspection [3].

Therefore, n-grams have commonly been used to perform basic analysis of natural
language and are a feasible way of performing language identification. However,
these lists of n-grams with their corresponding frequency are quite distinct from DNA
in living beings. On the other hand, since we are working with fixed length n-grams
we can easily construct a string including all the n-grams from the document,
repeating each n-gram as many times as specified by its simple frequency and
ordering them alphabetically (see Fig. 7).

This form of pseudo-DNA is well suited to perform comparisons among two or
more documents’ genomes. The very same sequence alignment algorithms employed
in bioinformatics can be used over these pseudo-DNA strings to perform language

3 By doing this the algorithms are much simpler. It would be interesting to study the feasibility

of mixing n-grams of different sizes into a single pseudo-DNA string.

446 D. Gayo-Avello, D. Álvarez-Gutiérrez, and J. Gayo-Avello

identification and document clusterization and, in fact, these algorithms can be greatly
simplified taking advantage of the alphabetical ordering of the “genes”.

ain-ain-ain-ainlays-e-ple-rahe-phe-r-in--in-in-iin-Sin-s
in-tinlylainly-i-maimainn-inn-Spn-stn-thnly-pain-plaplai
-rairains-ma-SpaSpai-stastaytaysThe-the--The-they-inys-m

Fig. 7. Example document genome. Bold type is used only for the sake of clarity.

While this technique appears to be equivalent to the “out-of-place” measure used in
[3] to compare n-gram profiles the concept of document distance is, perhaps, more
easily understood using the pseudo-DNA and sequence alignment algorithms.
Currently the application of this technique to language identification and topic
clustering is a work in progress, but it has many more possible applications such as
keyphrase extraction and text summarization.

This pseudo-DNA needs, however, some improvements. Since the simple
frequency depends on the length of the document we cannot use it to determine the
number of repetitions of each n-gram. Instead, we must use their relative frequency
and perform some scaling to transform the floating point values into integers. Also,
using a logarithmic scale appears to be an adequate solution. What is more, the simple
frequency is not the most relevant measure associated with each n-gram. For instance,
following with the prior example document, we cannot say that Spain and mainly
are equally relevant although the 4-grams Spai and inly share the same frequency.

Working with bigrams there are various measures to show the relation between
both elements of a pair (e.g., mutual information, Dice coefficient, φ2 coefficient,
Loglike, etc.) Such measures provide much more interesting information than simple
frequency but they cannot be applied straight forward to n-grams without a
generalization. For this proposal we have chosen the Fair Specific Mutual Information
(SI_f) [10] (see equations 1 and 2).









=

Avp

wwp
wwfSI n

n

)...(
log))...((_ 1

1

(1)

∑
−

=
+⋅⋅

−
=

1

1
11)...()...(

1
1 n

i
nii wwpwwp

n
Avp

(2)

In this measure, w1…wn represents an n-gram, while w1…wi and wi+1…wn are two
fragments of that n-gram –e.g., Spai, S and pai, respectively. In addition p(w1…wn)
is the probability (i.e., relative frequency) of the full n-gram while p(w1…wi) and
p(wi+1…wn) are the appearance probabilities of each segment not only as part of the
original n-gram4.

4 For instance, in the case of the 4-gram inly, the segment in appears as left-sider in five

4-grams: [in-S]pain, ra[in-i]n, Spa[in-s]tays, [in-t]he and ma[inly].

Naïve Algorithms for Keyphrase Extraction and Text Summarization 447

A two-step algorithm is provided later in this paper (see Appendix). The first step,
precalculateMatrix, precalculates a table of data from a sequence of n-grams. The
second one uses that table to calculate the SI_f for a particular n-gram. For instance,
by applying these algorithms we found that the significances for Spai and inly are
2.013 and 1.975, respectively.

However, the values themselves are of little importance. What is really important is
that they allow us to rank the n-grams according to their relevance. From this ranking
the document DNA is built. But, first, the ranking must be scaled to the range 1...K
(being K a power of 2). This way the most relevant n-gram will appear K times in the
pseudo-DNA string while the least relevant will appear only once. As explained
above, all n-grams are placed in alphabetical order within the pseudo-DNA string. To
summarize this section we provide the following definitions.

Definition 13: N-Gram
A sequence of ISO-8859-1 (Latin 1) alphabetic characters, either lowercase or
uppercase, or blanks. The length of the sequence (i.e., the size of the n-gram) is a
parameter of the document DNA since all the n-grams within a document DNA must
be equal in length. The most common being 4-grams and 5-grams.

Definition 14: Document Gene
A document gene is a variable length repetition of a unique n-gram. The number of
appearances of the n-gram in the gene depends on its ranking within the original
document’s n-gram sequence according to the Fair Specific Mutual Information
measure (SI_f). A gene has at least one n-gram and at most K, a power of 2. K is a
parameter of the document DNA.

Definition 15: Document DNA
A document DNA is a text string representing a sequence of document genes in
alphabetical order without any separator.

5 Synthesis, Folding, and Effects of Significance Proteins

According to definitions 13 to 15, we can extract from a document written in any
western language a “genome” which would encode the “significance” of the different
n-grams occurring in that document. If this “genome” is in some way similar to the
DNA from living organisms it should hide some valuable information within it. Such
information could be extracted by means of a translation process similar to the protein
biosynthesis. The results from this translation process (i.e., the significance protein)
would ideally provide a way to compact themselves in a suitable representation of the
most relevant information in the document (i.e., a list of keyphrases) and should also
be capable of modifying the document itself (i.e., providing an automatic summary).

448 D. Gayo-Avello, D. Álvarez-Gutiérrez, and J. Gayo-Avello

5.1 Document’s DNA Translation into a Significance Protein

To implement such ideas we must previously find the counterparts for mRNA, tRNA
and the ribosome in this scenario. Since the techniques shown in this paper are freely
inspired by protein biosynthesis we can redefine some roles. This way, our proposed
technique will use the elements shown in Table 1.

Table 1. Biological elements and their computational counterparts.

Biological element Computational element
mRNA Document’s plain text
tRNA Spliced document DNA

Polypeptide chain (protein’s primary
structure)

Document chunks with significance weights

Ribosome The ribosomalTranslation Algorithm
Folded protein Document’s keyphrases

The basic ideas behind this technique are quite straightforward:
1. The document DNA encodes, by means of the different lengths of its genes,

the significance of each n-gram from the document. This DNA can be spliced
into chunks which will carry a “significance weight” attached to a specific
n-gram behaving in a similar way to tRNA (see Fig. 8).

2. The plain text from the document doesn’t provide any information to the
computer about the different relevance of each passage and word. However, it
is well-suited to be sequentially processed and, thanks to our computational
tRNA, a weight can be assigned to each n-gram from this text (see Fig. 9).

3. We already know that real proteins fold into a low-energy conformation or,
which is the same, a maximum entropy state [8]. In a similar fashion, the
“significance weights” assigned to each n-gram from the document’s text will
be accumulated while the mean significance per character continues growing.
This way, a sequence of chunks of text with maximum significance will be
obtained, being the equivalent to the polypeptide chain in protein biosynthesis.

4. All these tasks will be carried out by an algorithm (i.e., our ribosome) shown
in the Appendix.

Fig. 8. Document DNA is spliced into “tRNA
molecules” carrying significance weights.

Fig. 9. This tRNA attaches to the document’s
text endowing it with significance values.

Naïve Algorithms for Keyphrase Extraction and Text Summarization 449

5.2 Significance Protein Folding: Keyphrase Extraction

The ribosomalTranslation algorithm splits the document’s text into a sequence of
chunks with maximum significance. This sequence is analogous to the primary
structure of a protein since it has all the information to reach the final functional form,
however, it still has to undergo the folding process (see Fig. 10).

This process is performed by the algorithm proteinFolding (see Appendix) which
depends on three different algorithms: (1) selfAttract (see Appendix), (2) mergeKeys
and (3) sliceKeys. The last two algorithms are quite simple: mergeKeys receives as
input a sequence of weighted keyphrases, a threshold and a window size and merges
all the keys weighted above the threshold and inside the specified window. sliceKeys
simply drops any keyphrase below the specified threshold.

5.3 Significance Protein Effects on the Document: Summarization

Once the proteinFolding algorithm has produced the significance protein this can act
on the document’s text to modify it, producing both a highlighted version of the
document and an automatic summary. The algorithm to apply the protein over the
document’s text, blindLight, and another algorithm to obtain a refined list of
keyphrases from the folded protein are shown in the Appendix.

of-Liberia's(22.06) -for-ECOWAS(21.83) a-Liberia's(21.79)
Scott(21.75) Economic(21.32) House-Nyudueh(21.31)
Liberia's(21.25) National(20.94) House-Nyudueh(20.91)
A-West(20.87) International(20.82) Taylor's(20.82)…

Fig. 10. Top 12 most significant chunks from a web page5. Chunks that will likely come to-
gether to form the “folded protein” are shown in bold (blanks have been replaced by hyphens).

6 The “blindLight” Prototype

To test the feasibility of previous ideas we developed a prototype and made it publicly
available in the Web6. This prototype, called “blindLight”, receives a URL from the
user and returns as results three different views from the original web page: a
“blindlighted” version of the page, a list of keyphrases and an automatic summary. To
reach such results the prototype performs a number of steps (see Fig. 11) which are
described below.

1. The web page is distilled to obtain the main contents as plain text.
2. From these contents two genomic sequences are extracted (a 4-gram gene

sequence and a 5-gram gene sequence –see Section 4).

5 http://edition.cnn.com/2003/WORLD/africa/08/04/liberia.peacekeepers/
6 http://www.purl.org/NET/blindlight

450 D. Gayo-Avello, D. Álvarez-Gutiérrez, and J. Gayo-Avello

3. Both sequences are translated into significance proteins (Section 5.1) which, in
turn, are folded (Section 5.2) obtaining two lists of candidate keyphrases.

4. The folded significance protein acts on the document obtaining the most
relevant passages from the document (Section 5.3).

5. The results are shown to the user (see Fig. 12 and Fig. 13).

Peacekeepers expect Taylor to leave power
Rebel leader: Opposition does not trust Liberian president
Tuesday, August 5, 2003 Posted: 2:47 AM EDT (0647 GMT)

MONROVIA, Liberia (CNN) -- A West African organization
that sent an initial contingent of peacekeepers to Liberia
expects President Charles Taylor to abandon power once the
force is deployed, a spokeswoman for the regional bloc
said Monday.

-Afr-Afr-Afr-Pre-Pre-Pre-Wes-Wes-Weseaceeace
eaceeacekeepkeepkeepkeepLibeLibeLibeLibeLibe
TaylTayl…

of-Liberia's(22.06) -for-ECOWAS(21.83) a-Liberia's(21.79)
Scott(21.75) Economic(21.32) House-Nyudueh(21.31)
Liberia's(21.25) National(20.94) House-Nyudueh(20.91)
A-West(20.87) International(20.82) Taylor's(20.82)…

Fig. 11. The different steps to “blindlight” a document.

7 Partial Results and Conclusions

Further and more thorough analysis of these keyphrase extraction and summarization
techniques is needed. However, some proof-of-concept tests have been performed and
the results, although they could certainly be improved, are extremely promising. This
preliminary experiment was carried out over 20 articles from three different journals
(Psycoloquy, Behavioral & Brain Sciences Preprint Archive –both about cognition–
and the Journal of the International Academy of Hospitality Research –about hotel
industry). All of which are available on the Web and include a list of keywords
provided by the articles’ authors.

The test was quite straightforward. First, the described algorithms were applied
over “censored” versions of the papers (i.e., the abstract, list of keywords and
references were manually removed from each article) to obtain a list of keyphrases.
Then, the percentage of matches was computed for every execution. An automatically
extracted keyphrase was a match if it was in the original list of keywords; however,
keywords from the list not occurring in the text of the article were not taken into
account. Table 2 shows an outline of the results. However, these results have two

Naïve Algorithms for Keyphrase Extraction and Text Summarization 451

major caveats: (1) some authors provide many keywords not included in the article7;
(2) our techniques obtain much more keyphrases apart from the matches so experts
from the respective fields should check their relevance to the article.

Fig. 12. The actual layout of a web page. Fig. 13. The same web page “blindlighted”.

Thus, a new proposal to perform some NLP tasks such as language identification,
document clustering, keyphrase extraction and text summarization has been presented
with particular emphasis in the last two tasks. The described techniques are based
primarily on biological phenomena, and they show that naïve keyphrase extraction
and summarization algorithms perform feasibly without human guidance and no more
than free text from a single document.

Table 2. Results for the preliminary test on automatic keyphrase extraction.

Journal Mean author’s keywords in
contents

Mean
matches

Max.
matches

Min.
matches

B&BSPA 78.5% 40.4% 58.5% 33.0%
Psycoloquy 55.3% 36.8% 66.7% 00.0%
JIAHR 87.5% 50.2% 65.0% 31.4%

7 One article from Psycoloquy provided eight keyphrases and only one (12.5%) was mentioned

in the article. There were many lists of keywords with less than 20% of them in the contents.

452 D. Gayo-Avello, D. Álvarez-Gutiérrez, and J. Gayo-Avello

References

1. Dunning, T.: Statistical identification of language. Computing Research Laboratory, New
Mexico State University (1994)

2. Sibun, P., Reynar, J.C.: Language Identification: Examining the Issues. Proc. of 5th
Symposium on Document Analysis and Information Retrieval. Las Vegas, USA (1996)

3. Cavnar, W.B., Trenkle J.M.: N-Gram-Based Text Categorization. Proc. of 3rd Annual
Symposium on Document Analysis and Information Retrieval, Las Vegas, USA (1994)

4. Slonim, N., Tishby, N.: Document clustering using word clusters via the information
bottleneck method. Proc. of 23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. Athens, Greece (2000) 208-215

5. Hulth, A.: Improved Automatic Keyword Extraction Given More Linguistic Knowledge.
Proc. of the 2003 Conference on Empirical Methods in NLP. Sapporo, Japan (2003)

6. Matsuo, Y., Ishizuka, M.: Keyword Extraction from a Single Document using Word
Co-occurrence Statistical Information. Proc. of the Sixteenth International FLAIRS
Conference. St. Augustine, FL, USA (2003) 392-396

7. Hovy, E., Lin, C.: Automated text summarization in SUMMARIST. In: I. Mani and M.
Maybury (eds.), Advances in Automated Text Summarization. MIT Press (1999)

8. Srinivasan, R., Rose, G.D.: Ab initio prediction of protein structure using LINUS.
Proteins: Structure, Function, and Genetics, Wiley-Liss, 47(4) (2002) 489-495

9. Larson, S.M. et al: Folding@Home and Genome@Home: Using distributed computing to
tackle previously intractable problems in computational biology. In: Richard Grant (ed.),
Computational Genomics. Horizon Press (2003)

10. Ferreira da Silva, J., Pereira Lopes, G.: Extracting Multiword Terms from Document
Collections. Proc. of VExTAL, Venice, Italy (1999)

Appendix: Algorithms

Algorithm precalculateMatrix (ngramSequence)
Input: the list of weighted n-grams ngramSequence
1. totalNgramsWeight 0
2. for each n-gram ngram in ngramSequence do
3. totalNgramsWeight totalNgramsWeight + ngram.weight
4. firstSegments getFirstSegments(ngram)
5. secondSegments getSecondSegments(ngram)
6. from i 0 to size of firstSegments do
7. first firstSegments(i)
8. sec secondSegments(i)
9. precalcMatrix(first)(sec) ngram.weight
10. precalcMatrix(first)(ALL) precalcMatrix(first)(ALL) + ngram.weight
11. precalcMatrix(ALL)(sec) precalcMatrix(ALL)(sec) + ngram.weight
12. loop
13. loop
14. totalSegmentsWeight 0
15. for each value weight in precalcMatrix(ALL) do
16. totalSegmentsWeight totalSegmentsWeight + weight
17. loop

Naïve Algorithms for Keyphrase Extraction and Text Summarization 453

Algorithm SI_f (ngram)
Input: the object ngram storing an n-gram plus its weight (no. of appearances in
document)
1. pw1wn ngram.weight / totalNgramsWeight // totalNgramsWeight is global
2. firstSegments getFirstSegments(ngram)
3. secondSegments getSecondSegments(ngram)
4. avp 0
5. from i 0 to size of firstSegments do
6. w1wi firstSegments(i)
7. wiwn secondSegments(i)
8. pw1wi precalcMatrix(w1wi)(ALL) / totalSegmentsWeight
9. pwiwn precalcMatrix(ALL)(wiwn) / totalSegmentsWeight
10. avp avp + pw1wi * pwiwn

11. loop
12. avp avp / (sizeNgram – 1) // sizeNgram is global
13. return log10 (pw1wn / avp) // Fair Specific Mutual Information value for ngram

Algorithm ribosomalTranslation (text, tRNA, sizeNgram)
Input: the contents, text, from a document, a hash table tRNA which associates a
significance value to an n-gram, the size of the n-grams sizeNgram
1. i 0
2. candidateKey λ// empty string
3. oldCandidateSignificance 0
4. while i < (length of text – sizeNgram) do
5. chunk substring (text, i, sizeNgram)
6. candidateKey merge(candidateKey, chunk) // Combines two strings
7. acumSignificance acumSignificance + tRNA(chunk)
8. newCandidateSignificance acumSignificance / length of candidateKey
9. if newCandidateSignificance > oldCandidateSignificance
10. oldCandidateSignificance newCandidateSignificance
11. i i + 1
12. else
13. candidateKey candidateKey – chunk
14. Call addNewChunk (candidateKey, oldCandidateSignificance)
15. candidateKey λ
16. oldCandidateSignificance 0
17. i undo(i, chunk) // Undo the last action to recover i value
18. end if
19. loop

Algorithm proteinFolding(textChunks)
Input: the hash table textChunks that associates a significance weight to each text chunk
1. newKeys selfAttract(textChunks) // Obtains a list of chunks with new weights
2. threshold mean of newKeys weights + π/2 * typical deviation of newKeys weights
3. window round(log2(size of newKeys))
4. newKeys mergeKeys(newKeys, threshold, window) // Merges similar keys
5. threshold mean of newKeys weights + π/2 * typical deviation of newKeys weights
6. newKeys sliceKeys (newKeys, threshold)
7. return mergeKeys (newKeys, 0, size of newKeys) // Subset of weight keyphrases

454 D. Gayo-Avello, D. Álvarez-Gutiérrez, and J. Gayo-Avello

Algorithm selfAttract(textChunks)
Input: the hash table textChunks that associates a significance weight to each text chunk
1. // Each chunk is assigned a “probability” of attraction based on its original ranking
2. max (π/2)size of textChunkss – 1
3. from i 0 to size of textChunks do
4. tmpPweights(i) (π/2 * (π/2)i) / max
5. loop
6. for each keyphrase key in textChunks do
7. pWeights(key) tmpPweights(ranking(key, textChunks))
8. loop
9. // Each chunk is assigned a “probability” of attraction based on its contacts weights
10. maxContact 0
11. for each keyphrase key1 in textChunks do
12. contacts 0
13. for each keyphrase key2 in textChunks do
14. if partialMatch (key1, key2)
15. contacts contacts + textChunks(key2) / textChunks/(key1)
16. end if
17. loop
18. if contacts > maxContact
19. maxContact contacts
20. end if
21. pContacts(key1) contacts
22. loop
23. for each keyphrase key in textChunks do
24. pContacts(key) (maxContact – pContacts(key)) / maxContact
25. loop
26. // The final attraction “probability” is pWeights * pContacts
27. for each keyphrase key in textChunks do
28. pAttraction(key) pWeights(key) * pContacts(key)
29. loop
30. // New weights after attraction reinforcements are compute
31. for each keyphrase key1 in textChunks do
32. w1 textChunks(key1)
33. for each keyphrase key2 in textChunks do
34. if partialMatch (key1, key2)
35. w1 w1 + pAttraction(key1) * pAttraction(key2) * textChunks(key2)
36. end if
37. loop
38. newWeights(key1) w1

39. loop
40. return newWeights // Input keyphrases with new weights after mutual reinforcement

Naïve Algorithms for Keyphrase Extraction and Text Summarization 455

Algorithm enrichKeyphrases (keyphrases, document, maxIters)
Input: the hash table keyphrases with weighted keyphrases, document, the contents of the
document and the maximum number of iterations maxIters
1. iters 0
2. while new keyphrases are found and iters < maxIters do
3. for each keyphrase key in keyphrases do
4. leftSiders getLeftSideWords(key, document)
5. rightSiders getRightSideWords(key, document)
6. for each left side word l in leftSiders do
7. keyPairs(l)(key) keyPairs(l)(key) + 1
8. loop
9. for each right side word r in rightSiders do
10. keyPairs(key)(r) keyPairs(key)(r) + 1
11. loop
12. drop any keyPairs(a)(b) with a value of 1
13. keyphrases merge(keyphrases, keypairs)
14. iters iters + 1
15. loop
16. loop
17. return keyphrases // The hash table updated with new rich keyphrases

Algorithm blindLight (passages, richKeyphrases, K)
Input: the list of passages from the text passages, the hash table richKeyphrases with
weighted refined keyphrases and the K factor to modify the summary threshold
1. for each passage p in passages do
2. acumWeight 0
3. matches 0
4. for each rich keyphrase key in richKeyphrases do
5. if key is in p
6. acumWeight acumWeight + richKeyphrases(key)
7. matches matches + 1
8. end if
9. loop
10. highlightWeights(p) matches * acumWeight / length of p
11. loop
12. threshold K * mean of non-zero highlightWeights
13. for each passage p in passages do
14. if highlightWeights(p) > threshold
15. Call highlightHTML(p)
16. Call addPassageToSummary(p)
17. end if
18. loop

	1 Introduction
	2 Biological Definitions
	3 Synthesis, Folding, and Functions of Proteins
	3.1 The Translation Process
	3.2 Protein Folding and Functions

	4 A DNA for Natural Language?
	5 Synthesis, Folding, and Effects of Significance Proteins
	5.1 Document’s DNA Translation into a Significance Protein
	5.2 Significance Protein Folding: Keyphrase Extraction
	5.3 Significance Protein Effects on the Document: Summarization

	6 The “blindLight” Prototype
	7 Partial Results and Conclusions

