Skip to main content

A \(2^{O(n^{1-{1\over d}}\log n)}\) Time Algorithm for d-Dimensional Protein Folding in the HP-Model

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

The protein folding problem in the HP-model is NP-hard in both 2D and 3D [4,6]. The problem is to put a sequence, consisting of two characters H and P, on a d-dimensional grid to have the maximal number of HH contacts. We design a \(2^{O(n^{1-{1\over d}}\log n)}\) time algorithm for d-dimensional protein folding in the HP-model. In particular, our algorithm has \(O(2^{6.145\sqrt{n}\log n})\) and \(O(2^{4.306n^{2\over 3}\log n})\) computational time in 2D and 3D respectively. The algorithm is derived via our separator theorem for points on a d-dimensional grid. For example, for a set of n points P on a 2-dimensional grid, there is a separator with at most \(1.129\sqrt{n}\) points that partitions P into two sides with at most \(({2\over 3})n\) points on each side. Our separator theorem for grid points has a greatly reduced upper bound than that for the general planar graph [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Batzoglou, S., Dancik, V., Decatur, S., Hannenhalli, S., Farach, M., Muthukrishnan, M., Skiena, S.: Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model. Journal of Computational Biology 4, 275–296 (1997)

    Article  Google Scholar 

  2. Alon, N., Seymour, P., Thomas, R.: Planar Separator. SIAM J. Discr. Math. 7(2), 184–193 (1990)

    Article  MathSciNet  Google Scholar 

  3. Backofen, R.: Constraint techniques for solving the protein structure prediction problem. In: Proceedings of 4th International conference on principle and practice of constrain programming. LNCS, pp. 72–86. Springer, Heidelberg (1998)

    Google Scholar 

  4. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. Journal of Computational Biology 5, 27–40 (1998)

    Article  Google Scholar 

  5. Cohen, F.E., Sternberg, M.J.E.: On the prediction of protein structure: the significance of the root-mean-square deviation. J. Mol. Biol. 138, 321–333 (1980)

    Article  Google Scholar 

  6. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. Journal of computational biology 5, 423–465 (1998)

    Article  Google Scholar 

  7. Bastolla, U., Frauenkron, H., Gerstner, E., Grassberger, P.: Nadler, Testing a new Monte Carlo algorithm for protein folding. Protein: Structure, Function, and Genetics 32, 52–66 (1998)

    Article  Google Scholar 

  8. Godzik, A., Skolnick, J., Kolinski, A.: Regularities in interaction patterns of globular proteins. Protein Engineering 6, 801–810 (1993)

    Article  Google Scholar 

  9. Godzik, A., Skonick, J., Kolinski, A.: A topology fingerprint approach to inverse protein folding problem. J. Mol. Biol. 227, 227–238 (1992)

    Article  Google Scholar 

  10. Hart, W.E., Istrail, S.: Fast protein folding in the hydrophobic-hydrophilic model within three-eights of optimal. In: Proceedings 27th ACM symposium on the theory of computing (1995)

    Google Scholar 

  11. Holm, L., Sander, C.: Mapping the protein universe. Science 273, 595–602 (1996)

    Article  Google Scholar 

  12. Khimasia, M., Coveney, P.: Protein structure prediction as a hard optimization problem: The genetic algorithm approach. Molecular Simulation 19, 205–226 (1997)

    Article  Google Scholar 

  13. Krasnogor, N., Pelta, D., Lopez, P.M., Mocciola, P., De la Canal, E.: Genetic algorithms for the protein folding problem: A critical view. In: Alpaydin, C.F.E. (ed.) Proceedings of Engineering of Intelligent Systems, ICSC Academic Press, London (1998)

    Google Scholar 

  14. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22, 3986–3997 (1989)

    Article  Google Scholar 

  15. Lau, K.F., Dill, K.A.: Theory for protein mutability and biogenesis. Proc. Natl. Acad. Sci. 87, 638–642 (1990)

    Article  Google Scholar 

  16. Lipton, R.J., Tarjan, R.: A separator theorem for planar graph. SIAM J. Appl. Math. 36, 177–189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liang, F., Wong, W.H.: Evolutionary Monte Carlo for Protein folding simulations. Journal of Chemical Physics 115(7), 3374–3380 (2001)

    Article  Google Scholar 

  18. Newman, A.: A new algorithm for protein folding in the HP model. In: Proceedings 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 876–884 (2002)

    Google Scholar 

  19. Patton, A., W.P.III, Goldman, E.: A standard ga approach to native protein conformation prediction. In: Proc 6th Intl Conf Genetic Algorithms, Morgan Kauffman, pp. 574–581. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  20. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley-Interscience Publication, Hoboken (1995)

    MATH  Google Scholar 

  21. Piccolboni, A., Mauri, G.: Application of evolutionary algorithms to protein prediction. In: Kasabov, N.e.a. (ed.) Proceedings of I-CONIP 1997, Springer, Heidelberg (1998)

    Google Scholar 

  22. Rabow, A.A., Scheraga, H.A.: Improved genetic algorithm for the protein folding problem by use of a cartesian combination operator. Protein Science 5, 1800–1815 (1996)

    Article  Google Scholar 

  23. Ramakrishnan, R., Ramachandran, B., Pekney, J.F.: A dynamic Monte Carlo algorithm for exploration of dense conformation spaces in heteropolymers. Journal of Chemical Physics 106, 2418 (1997)

    Article  Google Scholar 

  24. Smith, W.D., Wormald, N.C.: Application of geometric separator theorems. In: FOCS 1998, pp. 232–243 (1998)

    Google Scholar 

  25. Sali, E., Shakhnovich, M.: Karplus, How does a protein fold? Nature 369, 248–251 (1994)

    Article  Google Scholar 

  26. Unger, U., Moult, J.: A Genetic algorithm for three dimensional protein folding simulations. In: Proc. 5th Intl Conf on Genetic Algorithms, pp. 581–588 (1993)

    Google Scholar 

  27. Unger, U., Moult, J.: Genetic algorithms for protein folding simulations. Journal of Molecular Biology 231(1), 75–81 (1993)

    Article  Google Scholar 

  28. Yue, K., Dill, K.A.: Sequence-structure relationships in proteins and copolymers. Physical Review E48, 2267–2278 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fu, B., Wang, W. (2004). A \(2^{O(n^{1-{1\over d}}\log n)}\) Time Algorithm for d-Dimensional Protein Folding in the HP-Model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics