
Optimal Website Design with the Constrained
Subtree Selection Problem

Brent Heeringa1,2 and Micah Adler1

1 Department of Computer Science, University of Massachusetts, Amherst
140 Governors Drive Amherst, MA 01003

2 Department of Computer Science, Williams College, Williamstown, MA, 01267
{heeringa,micah}@cs.umass.edu ?

Abstract. We introduce the Constrained Subtree Selection (CSS) prob-
lem as a model for the optimal design of websites. Given a hierarchy of
topics represented as a DAG G and a probability distribution over the
topics, we select a subtree of the transitive closure of G which minimizes
the expected path cost. We define path cost as the sum of the page costs
along a path from the root to a leaf. Page cost, γ, is a function of the
number of links on a page. We give a sufficient condition for γ which
makes CSS NP-Complete. This result holds even for the uniform proba-
bility distribution. We give a polynomial time algorithm for instances of
CSS where G does not constrain the choice of subtrees and γ favors pages
with at most k links. We show that CSS remains NP-Hard for constant
degree DAGs, but also provide an O(log(k)γ(d + 1)) approximation for
any G with maximum degree d, provided that γ favors pages with at
most k links. We also give a complete characterization of the optimal
trees for two special cases: (1) linear degree cost in unconstrained graphs
and uniform probability distributions, and (2) logarithmic degree cost in
arbitrary DAGs and uniform probability distributions.

1 The Constrained Subtree Selection Problem

In this paper, we study the optimal design of websites given a set of page topics,
weights for the topics, and a hierarchical arrangement of the topics. Automatic
website design provides a principled choice for information organization, facili-
tates individualized and user-centric site layout, and decreases the average time
spent searching for relevant information.

As an example, imagine that A Different Drummer’s Kitchen is creating a
new website for their catalog of kitchenware. They want a website where their
customers can quickly find information on specific products by descending a
hierarchy of general to specific categories, much like the Yahoo! portal. They
want to minimize the number of intermediate pages it takes to find pepper mills
but not at the expense of filling a page with links to marginally related products
like tea kettles, cookie cutters and aprons.
? This research partially funded under NSF Research Infrastructure Award EIA-

0080119, NSF Faculty Early Career Development Award CCR-0133664, and NSF
ITR Grant ITR-0325726

Constrained Subtree Selection (CSS) models these website design problems.
We suppose that prior to site development, topics are hierarchically arranged by
a designer to represent their natural organization. We represent this initial hier-
archy as a rooted, directed acyclic graph, called the constraint graph where the
nodes are categories, the leaves are topics and the edges are topical constraints.
A path through the constraint graph follows a general to specific trajectory
through the categories. For example, in the kitchenware hierarchy cutlery leads
to knives leads to paring knives. Note that a particular paring knife may belong
to other categories (like the knife manufacturer), and thus the constraint graph
may be a DAG that is not a directed tree.

A website should preserve this logical relationship in its own topology. We
represent websites as directed trees, where pages are represented by nodes and
links are represented by directed edges. We require that the directed tree satisfy
two conditions. First, there must be a one-to-one mapping M of nodes in the
website to nodes in the constraint graph. This is a constraint since adding new
nodes would infer structure that is not represented in the constraint graph.
Second, if categories in the constraint graph are not included in the website,
a user should still be able to descend naturally toward the desired topic. This
means that if page A descends directly from page B in the website then M(A)
must be reachable from M(B) in the constraint graph. A necessary and sufficient
condition for both of these conditions to be satisfied is that the website be a
directed subtree of the transitive closure of the constraint graph. In this way, the
initial hierarchy offers a set of constraints on topic layout but frees the web site
developer to move specific pages to more general categories. Finally, we stipulate
that the subtree include the root and leaves of the constraint graph since they
represent the entry and endpoints of any natural descent in the website.

Our objective is to find the website which minimizes the expected time search-
ing for a topic. We say the cost of a search is the sum of the cost of the pages
along the search path. We represent page cost as a function of the number of
links on a page, so we call it the degree cost. Adding more links decreases the
height of the tree, but increases the time spent searching a page; minimizing the
number of links on a page makes finding the right link easy, but adds height to
the website. For this reason, we can also think of the degree cost as capturing
the inherent tension between breadth and depth. Different scenarios demand
different tradeoffs between these competing factors. For example, if network la-
tency is a problem when loading web pages then favoring flatter trees with many
links per page decreases idle waiting. In contrast, web browsers on handheld de-
vices have little screen area, so to reduce unnecessary scrolling it’s better to
decrease the number of links in favor of a deeper tree. In the spirit of generality,
we attempt to keep our results degree-cost independent. At times however, we
examine particular degree costs such as logarithmic and linear.

Naturally, some pages are more popular than others. We capture this aspect
with a probability distribution over the topics, or equivalently by topic weights.
Given a path, we say the weighted path cost is the sum of the page costs along
the path (i.e. the unweighted path cost) multiplied by the topic weight. Since we
want a website that minimizes the average search time for a topic, we take the
cost of a tree as the expected path cost for a topic chosen from the probability

distribution over the topics. An optimal tree is any minimal cost subtree of the
transitive closure of the constraint graph that includes the leaves and root.

We’re now in a position to define our model more formally. Let T be a
directed tree (a branching) with n leaves where leaf ui has weight wi. Let ui =
(ui1 , . . . , uim) be a path from the root of T to the ith leaf of T . If δ(v) is the
out-degree of node v and γ is a function from the positive integers to the reals,
then the cost of ui is:

c(ui) =
m−1∑
j=1

γ(δ(uij
))

and the weighted cost is wi · c(ui). The cost of T is the sum of the n weighted
paths: c(T) =

∑n
i=1 wi · c(ui).

An instance of the Constrained Subtree Selection problem is a triple I =
(G, γ, (wi)) where G is a rooted, directed, acyclic constraint graph with n leaves,
γ is a function from the positive integers to the non-negative reals, and (wi) =
(w1 . . . wn) are non-negative, real-valued leaf weights summing to one. A solution
to I is a directed subtree T (hereafter a tree) of the transitive closure of G that
includes the leaves and root of G. An optimal solution is one that minimizes
the cost function under γ. Sometimes we consider instances of CSS with fixed
components. For example, we might study the problem when the degree cost is
always linear, or leaf weights form a uniform probability distribution. We refer
to these cases as CSS with γ or CSS with equal leaf weights so that it is clear
that γ and (wi) are not part of the input.

Websites are not the only realization of this model. For example, consider cre-
ating and maintaining user-specific directory structures on a file system. One can
imagine that the location of /etc/httpd may be promoted to the root directory
for a system administrator whereas a developer might find ~/projects/source
directly linked in their home directory. Similarly, users may have individualized
views of network filesystems targeted to their own computing habits. In this
scenario a canonical version of the network structure is maintained, but the CSS
problem is tailored to the individual. In general, any hierarchical environment
where individuals actively use the hierarchy to find information invites modeling
with CSS.

1.1 Results

In this paper, we give results on the complexity of CSS, polynomial time al-
gorithms and characterizations of the optimal solution for certain restricted in-
stances of CSS, and a polynomial time constant approximation algorithm for
fixed-degree constraint graphs in a broad class of degree costs.

First, we show a sufficient condition on the degree cost which makes Con-
strained Subtree Selection NP-Complete in the strong sense for arbitrary input
DAGs. Many natural degree costs (e.g., linear, exponential, ceiling of the loga-
rithm) meet this condition. Furthermore, this result holds even for the case of
uniform leaf weights.

Because of this negative result, we turn our attention to restricted scenarios
and approximation algorithms. We first consider the case of inputs where the
topological constraints of the graph are removed (i.e., where the constraint graph

allows any website tree to be constructed). Within this scenario, we consider
a general class of degree functions, called k-favorable degree costs, where the
optimal solution favors trees such that all the nodes have out-degree k or less.
We give an O(nk+γ(k)) time algorithm for finding an optimal tree when the
topological constraints of the graph are removed and when γ is non-decreasing,
restricted to functions with integer co-domains, and k-favorable. This result holds
for arbitrary leaf weights, and demonstrates that the computational hardness
of the CSS problem is a result of the conditions imposed by the constraint
graph. We also provide an exact characterization of the optimal solution for the
linear cost function (which is 3-favorable) in the case of a uniform probability
distribution and no topological constraints.

We next consider the case of bounded out-degree constraint graphs. We
demonstrate that when γ favors complete k-ary trees, CSS remains NP-Hard
for graphs with degree at most k +5 and uniform leaf weights. However, we also
give a polynomial time constant factor approximation algorithm for constraint
graphs with degree no greater than d and arbitrary leaf weights, provided that
γ is k-favorable for some k. The approximation ratio depends on both d and γ.
Additionally, we show the linear degree cost favors complete k-ary trees.

Finally, for arbitrary constraint graphs, γ(x) = dlog2(x)e, and uniform leaf
weights, we demonstrate that even though this case is NP-Complete, the depth-
one tree approximates the optimal solution within an additive constant of 1. Due
to space constraints, most of the proofs of our results appear in [9].

1.2 Related Work

Constrained Subtree Selection is related to three distinct bodies of work. The first
is work in the AI community by Perkowitz and Etzioni [1]. While the authors
are concerned with many issues related to building intelligent websites, they
concentrate on the index page synthesis problem which seeks to “automatically
generate index pages to facilitate efficient navigation of a site or to offer a novel
view of the site” using new clustering and concept learning algorithms which
harness the access logs of the website. Here efficient means making sure visitors
find their topic of interest (recall) and minimizing the amount of time spent
finding that topic (effort). The time spent finding a topic is measured by the
time it takes to scan successive pages for the right link and the overall number
of links taken. Notice their definition of effort strongly resembles our notion of
cost. In this light, our work may be viewed as supplying a model for the index
page synthesis problem as it relates to minimizing the average effort in finding
the topic of interest.

The Hotlink Assignment (HA) problem introduced by Bose et. al ([2], [3])
also relates to our problem. Here, a website is represented by a DAG with a prob-
ability distribution over the leaves. A constant number of arcs, called hotlinks,
are added to the DAG to minimize the expected distance from the root to leaves.
Since multiple paths from the root to a leaf may exist, the expected distance is
computed using the shortest path. The problem is NP-Hard for arbitrary graphs,
but tractable for binary trees with arbitrary probability distributions over the
leaves. Recently, the problem was revised so that nodes have a fixed page cost
proportional to the size of the web page they represent [4]. In this formulation,

the cost of a path is not its length, but instead the sum of the page costs on the
path. The problem seeks to assign at most k hotlinks per node to minimize the
expected page cost.

Hotlink Assignment (HA) is different from CSS for a number of reasons. The
first is how we model page cost. In HA, page cost does not change with the
addition of hotlinks. In CSS, the cost of a page is a function of the number of
links it contains. This means we can think of CSS as minimizing the expected
amount of choice a user faces when traversing a website as opposed to HA
which essentially minimizes the expected amount of time waiting for pages to
load. Note that the generality of our degree function means we can also include a
network latency term in to our degree cost. Another difference is how we view the
initial topologies. With HA, the DAG represents a website that needs improving.
In CSS, we take the DAG as a set of constraints for building a website. This
difference is both conceptual and technical. While the shortest path tree can be
extracted from the Hotlink DAG after the links are assigned, a tree with longer
paths cannot be considered. We consider all paths in our subtree selection since
longer paths are viewed in terms of constraints and not cost. Finally, HA assigns a
constant number of hotlinks where CSS has no restriction. The constant number
is important to HA because without this restriction, the optimal website would
always have hotlinks from the root to all the leaves. In CSS this corresponds to
a constant degree function where the optimal tree is always the depth-one tree.

Certain relaxed versions of the Constrained Subtree Selection problem bear
resemblance to the Optimal Prefix-free Coding (OPC) problem: The general
problem asks for a minimal prefix code for n weighted words using at most r
symbols where symbol i has cost ci ([5], [6]). This problem is equivalent to finding
a tree with n leaves where all internal nodes having degree at most r, the length
of the ith edge of a node is ci, and the external weighted path length is minimized.
There is no known polynomial time solution for the general problem, but it is
not known to be NP-Hard. When the costs are restricted to fixed integers, there
is an O(nC+2) time dynamic programming algorithm where C is the maximum
integer cost [7].

On the surface, our problems appear similar because they both ask to mini-
mize external weighted path cost—the sum of weighted path costs from the root
to each of the leaves. However the cost in OPC is edge-based, where the cost
of CSS is node-based. More appropriately, the node cost in CSS is dynamic;
adding an additional edge means the cost of the node changes. If we view the
node costs as edge costs, than adding an edge potentially changes the edge costs
of all its siblings. This difference, along with the lack of prior constraints on the
tree structure in prefix-free codes, distinguish the problems enough that it seems
difficult to transform one to the other. Still, by relaxing the graph constraints,
and restricting the degree cost, we can show that some instances of CSS are
exactly instances of OPC for a binary alphabet with equal character costs, and
that in more general cases, we can adapt portions of the dynamic programming
algorithm for finding optimal prefix-free codes to our find optimal trees in the
CSS problem.

2 Complexity

In this section we show that even when the leaf weights are equal, the CSS
problem is NP-Complete in the strong sense for a large class of degree functions.
The reduction is from Exact Cover by 3-Sets (XC3) [8] which, when given a set
X of 3k = n items and a set C of three item subsets of X, asks whether a subset
of C exists that exactly covers X. The related decision problem for CSS asks
whether a subtree of G exists with cost at most D.

Definition 1. Let γ be a non-decreasing function. If for all integers k ≥ 1, there
exists some c > 0 and some function s(k) ∈ O(kc) such that

γ(s(k) + k + 1) > γ(s(k) + k) + γ(3)
3k

s(k) + 3k

then γ is degree-3-increasing

Many degree costs are degree-3-increasing. For example, the linear degree
cost, γ(x) = x, (choose s(k) = 7k), exponential degree cost γ(x) = exp(x) (again,
s(k) = 7k will work) and ceiling of the logarithm degree cost γ(x) = dlog2(x)e
(choose s(k) = 3k) all meet the definition. The following theorem tells us that
when γ is degree-3-increasing and in NP, that CSS with γ is NP-complete for
any DAG and any probability distribution.

Theorem 1. For any degree-3-increasing degree cost γ where γ is in NP, CSS
with γ is NP-Complete.

Because CSS is not a number problem when the leaf weights are equal (i.e.
we can ignore them when computing cost), we can show that it is NP-Complete
in the strong sense for a broad class of degree costs.

Theorem 2. For any degree-3-increasing degree cost γ, γ in NP, if there exists
c > 0 such that γ(s(n/3) + n/3) = O(nc) then CSS with γ is NP-Complete in
the strong sense.

3 Subtree Selection without Constraints

Imagine we are building a website without any prior knowledge of the organiza-
tion of the topics. The most natural solution is to build a website that minimizes
the expected search time for the topics, but has no constraints on the topology.
This design problem is an instance of CSS where any website is a subtree of the
transitive closure of the constraint graph. In this section we’ll show that these
instances are solvable in polynomial time for a broad class of degree functions.
This is interesting because it means the NP-Hardness of our problem comes from
the graphical constraints rather than the degree cost and leaf weights.

We begin with some definitions. A tree is full when every interior node has
at least two children. A constraint graph G with n leaves is called constraint-free
when every full tree with n leaves is a subtree of the transitive closure of G. This
means that G does not constrain the optimal subtree. A tree is monotone when

the leaf weights cannot be permuted (among the leaves) to yield a tree of lower
cost. Hence, if we listed the leaves in increasing order by path cost, the weights
of the leaves would be in decreasing order. From these definitions it’s easy to see
that every instance of CSS has at least one optimal solution that is full and that
all solutions to CSS are monotone when the the graph is constraint-free.

A degree cost γ is k-favorable if and only if there exists k > 0 such that
any instance of CSS where G is constraint-free has an optimal solution under γ
where the out-degree of every node is at most k. This definition is useful because
it gives us a bound on the out-degree of any node in an optimal solution to the
CSS problem where the graph is constraint-free. Proving that a particular γ
exhibits k-favorability for some k typically means showing that any node with
out-degree at least (k + 1) can be split into nodes of smaller degree with no
increase to the overall cost of the tree. Many degree costs are k-favorable. For
example the linear degree cost γ(x) = x is 3-favorable, but not 2-favorable [9].
In section 5 we characterize the optimal tree for the linear degree cost when
the graph is constraint-free and the weights are equal. It is worth noting that
any instance of CSS where G is constraint-free and γ is 2-favorable reduces to
the optimal prefix code problem for a binary alphabet with equal letter costs. In
other words, Huffman’s greedy algorithm ([10]) solves these problems. Examples
of degree costs that favor binary trees are γ(x) = dlog(x)e and γ(x) = ex.

But what happens when γ is k-favorable but not k− 1-favorable and k > 2?
More generally, is there a polynomial time algorithm that solves (G, γ, (wi))
when G is constraint-free and γ is k-favorable? In this section we give a dynamic
programming algorithm which leads to the following result.

Theorem 3. There is a O(nγ(k)+k) time algorithm which finds an optimal solu-
tion to any instance of CSS where G is constraint-free, γ is k-favorable for some
integer k, non-decreasing and maps the positive integers to the positive integers.

We adapt the dynamic programming algorithm for finding optimal prefix-free
codes (OPC) given by Golin and Rote ([7]) to the CSS problem. We highlight
some of the similarities and differences between the two algorithms here but give
a complete description of our algorithm and a proof of Theorem 3 in [9].

The solution to the optimal prefix-free coding problem with integer costs
relies on a lopsided representation of a tree. A lopsided tree equates a node’s
level to its path cost from the root. In other words, if u is a node in T , and the
path cost to u is C, then we say u is at level C. Restricting the cost to integers
means the levels are also integers. Golin and Rote associate a signature with
each tree level so that if a tree has h levels, then it has h signatures. Signatures
are always taken with respect to the truncation of a tree at a certain level. If T is
a tree with n leaves, then the level-i-truncation of T , denoted Trunci(T), prunes
away all nodes of T with parents at levels deeper than i. The level-i-signature of
T is the (C + 1) vector: sigi(T) = (m, l1, . . . , lC) where m is the number of leaf
nodes at levels 0 through i, lj is the number of nodes at level i+ j in Trunci(T),
and C is the largest symbol (edge) cost. If v1, . . . , vn are the leaves of T given in
increasing order by level and w1 . . . , wn are the leaf weights given in decreasing
order then the level-i-cost of T is ci(T) =

∑m
j=1 level(vj)wj +

∑n
s=m+1 i · ws

where m is the number of leaf nodes in Trunci(T).

The level-i-signature of a tree (m, l1, . . . , lC) equates to an entry in the dy-
namic programming table MIN[m, l1, . . . , lC]. This entry gives the minimum
level-i-cost of all trees with signature (m, l1, . . . , lC). There are O(nC+1) table
entries since the number of nodes at the fringe of the tree never exceeds n. Note
that the signature does not indicate level, so the value of an entry may corre-
spond to the level-i-cost of trees at a variety of levels. Given a tree’s signature at
level i+1, it’s possible to enumerate what level-i-signatures lead to it. Similarly,
the level-(i + 1)-cost of a tree can be written in terms of the level-i-cost of the
tree associated with the signature that precedes it which gives a natural method
for filling in the dynamic programming table.

When considering how level-(i + 1)-signatures relate to level-i-signatures,
we must consider structural changes to the tree. In the OPC domain, adding an
edge does not change the lopsided structure of the rest of the tree. In our domain
when an edge is added, the lopsided structure of the tree does change because the
node degree changes. As a result, we cannot apply Golin and Rote’s algorithm
verbatim; we can use the subproblem representation (i.e. the signatures) by
letting C = γ(k) but filling in the table requires a different approach.

We must examine the way two trees with the same signature at level i can
differ in their level-(i+1)-signature. Given a level-i-signature we must first choose
how many level (i+1) nodes will be internal, and them among those, which will
have degree 2, degree 3, and so on. We denote these choices with a (k+1)-vector
a = (a0, . . . , ak) called a child vector where a0 is the number of nodes at level-
(i + 1) that are internal to T and each aj is the number among those a0 having
degree j. Note that a0 ≤ l1 and that a1 = 0 since there is always an optimal tree
with no nodes having out-degree 1. Also, since

∑k
j=2 aj = a0 we know there are

O(nk−1) choices for a. In other words, given a level-i-signature, it is the possible
parent of O(nk−1) level-(i+1)-signatures. The following Lemma tells us exactly
which signatures are children of a level-i-signature parent.

Lemma 1. Let T be a tree with sigi(T) = (m, l1, . . . , lγ(k)). If a = (a0, a1, . . . , ak)
is the level-i-child vector of T yielding T ′, then sigi+1(T ′) = (m′, l′1, . . . , l

′
γ(k))

where
(m′, l′1, . . . , l

′
γ(k)) = (m + l1, l2, . . . , lγ(k), 0) + b

with b = (b0, . . . , bγ(k)) where b0 = −a0 and bγ(i) = i · ai for 2 ≤ i ≤ k

While Lemma 1 tells us how level-i-signatures relate to level-(i+1)-signatures
it does not tell us how the costs relate. The second part of Lemma 5 from [7]
tells us that if T is a tree with sigi(T) = (m, l1, . . . , lγ(k)) then ci+1(T) =
ci(T) +

∑n
j=m+1 wj . Fortunately, this result holds for all monotone, lopsided

trees with level-i-costs defined as above so even though our problem has a differ-
ent dependency structure in the table, it does not require a new way of computing
cost in terms of cost to subproblems. Golin and Rote give a linear ordering of
the table entries that respects their dependency structure. This ordering works
for us too, although their proof of this fact no longer applies because our table
entries have a different dependency structure. We describe the ordering in [9]
and show that it works for our problem too. What’s most important is that
viewing table entries as nodes and dependencies as edges still leaves us with a
DAG, so any topological sort yields an appropriate order for filling in the table.

Here is a description of our algorithm. We repeatedly process table en-
tries in an order that respects the dependency structure, beginning with the
entry corresponding to the level-1-truncation of a single node with two chil-
dren (MIN[0, 2, 0, . . . , 0]) and ending with the entry corresponding to a tree
with n leaves (MIN[n, 0, . . . , 0]). Given an entry we consider all its children (via
Lemma 1) and then update the cost of the children (by Lemma 5 in [7]) if there
is an improvement. After completing the table, the entry MIN[n, 0, . . . , 0] con-
tains the cost of the minimum tree. We can keep an additional table relaying
points to the entries which yield the optimal cost to easily reconstruct the op-
timal tree. The O(nγ(k)+k) running time of the algorithm follows because the
table has O(nγ(k)+1) entries of which each has at most O(nk−1) dependencies to
check.

4 Approximations

Many hierarchies have the property that no category has more than a con-
stant number of subcategories. This means the out-degree of every node in the
constraint graph is bounded above by a constant. In this section we give two
theorems dealing with such cases. The first theorem says that even if we restrict
the problem to DAGs of constant maximum degree, CSS remains NP-Hard for
certain degree costs. The second theorem gives an O(log(k)γ(d + 1)) approx-
imation algorithm for all instances of CSS where the maximum degree of the
constraint graph is bounded above by some constant d, and γ is k-favorable and
has a lower bound of 1.

Let a cost function be k-tree optimal if, for all instances of CSS with constraint-
free graphs and equal leaf weights, the unique optimal website tree with kc leaves,
for any positive integer c, is a complete k-ary tree of depth c. For example, in [9]
we show that the linear degree cost is 3-tree optimal.

Theorem 4. For any cost function that is k-tree optimal, for any k ≥ 3, the
CSS problem is NP-Hard even when restricted to the uniform probability distri-
bution and DAGs with degree at most k + 5.

Consider the Partitioned Exact Cover by 3 Sets (PX3S) problem, which we
define here. The input is a set S of 3q elements, where q is an integer, a collection
C of subsets of S of size 3, and a partition P of the collection C into exactly q
cells. We ask whether there is an exact cover of S that uses exactly one subset
from each cell of P . The proof of Theorem 4 appears in [9], but we provide a
high level overview here. The proof is in two parts. We first show that the PX3S
problem is reducible to the CSS problem with a k-tree optimal cost function,
restricted to DAGs of degree at most k + r−1, where r is the maximum number
of subsets in any cell of the partition P . We then show that the PX3S problem
is NP-Complete even when we restrict r to six.

Theorem 5. For any constraint graph G with m nodes where every node has
out-degree at most d and for every k-favorable degree cost γ where γ is bounded
below by 1, CSS with G and γ has an O(m) time O(log(k)γ(d+1))-approximation
to the optimal solution.

Proof. We begin by giving a lower bound on any instance of CSS where the
degree cost is k-favorable and bounded below by 1. Take W as the probability
distribution over leaf weights, W (x) as the total weight of the leaves in the
subtree rooted at x and H as the entropy function.

Lemma 2. For any k-favorable degree cost γ with γ bounded below by 1, H(W)
log(k)

is a lower bound on the cost of an optimal solution to CSS with γ.

The proof of the lemma appears in [9] but the main idea is that the cost
of any optimal tree to the CSS problem is bounded below by the cost of the
optimal prefix-free code over a k-ary alphabet with character costs 1 which is
bounded below by H(W)

log(k) by Shannon’s theorem.
Our approximation algorithm also requires the following result which is easy

to prove (although we provide a proof in [9]).

Claim. For any tree with with weights on its m nodes, there exists at least one
node, which, when removed, divides the tree into subtrees where every subtree
has at most half the weight of original tree. Furthermore we can find such a node
in O(m) time.

Let I = (G, γ, (wi)) be an instance of CSS where where every node in G
has out-degree at most d and γ is k-favorable. Extract any spanning tree T
from G. Using Claim 4 we can identity a node in T called the splitter which,
when removed, divides T into subtrees where each subtree has at most half the
probability mass of T . In our algorithm, we don’t remove the splitter from the
tree but rather, remove the edge(s) connecting it to its parent(s). We reconnect
the splitter to the root of T . Recursively apply this procedure on the subtrees
rooted by the children of the root of T and call the final tree T ′. Note that T ′

is still a subtree of the transitive closure of G since the splitter node is always
descendent of the root of the tree under consideration. If G has m nodes then
extracting a spanning tree from G takes O(m) time since each node has constant
degree. The complete procedure takes O(m) time since applying Claim 4 to all
m nodes can be accomplished in O(m) time with some bookeeping.

Claim. If r and s are nodes in T ′ where s is the grandchild of r, then W (r) ≥
2 ·W (s)

This claim follows immediately from the construction of T ′ with respect to
Claim 4. Since any two hops in T ′ divides the probability mass of the sub-
tree in half, we know the depth of leaf i is bounded above −2 log2(wi). Since
each node in T ′ has degree at most d + 1, the cost of T ′ is at most 2 · γ(d +
1)

∑n
i=1 wi(− log2(wi)) = 2 · γ(d + 1) ·H(W)

Since O(γ(d + 1)H(W)) approximates the lower bound of H(W)/ log(k) by
a multiplicative factor of O(log(k)γ(d + 1)) we have the desired result.

5 Leaves of Equal Weight

It is easy to imagine fledgling companies building websites without any prior
popularity statistics on their products. To gather such statistics, they may want

a website which puts all their products on an equal footing. Finding the optimal
website for equally-weighted topics corresponds to instances of CSS with a uni-
form probability distribution over the leaves. We characterize optimal trees for
these instances of CSS for the linear degree cost when the graph is constraint-
free, and for the logarithmic degree cost for any DAG.

5.1 Linear Degree Cost

Theorem 6 gives the cost of an optimal tree for the linear degree function when
the graph is constraint-free and γ(x) = x. We arrive at this cost by showing
how to construct an optimal tree. Proof of the the construction’s optimality is
involved, but the tree is simple to describe: An optimal tree with n leaves begins
with a complete tertiary tree with blog3(n)c leaves. Additional leaves are added
in pairs by splitting the leaves of the complete tertiary tree into binary nodes.
Finally, if we still require more leaves, we add an additional edge to each binary
node. In some sense, an optimal tree for n leaves is one that is always trying to
be the most complete tertiary tree with n leaves.

Theorem 6. If (G, γ, (wi)) is an instance of CSS where G is constraint-free,
γ(x) = x, and the n leaf weights are equal, then if n ≤ 2·3k, where k = blog3(n)c,
an optimal tree has cost 3nk + 4(n− 3k) otherwise it has cost 3(k + 1)(3k+1)−
((3k+1 − n)(3(k + 1) + 2))

5.2 Logarithmic Degree Costs

Another natural choice of degree cost is γ(x) = lg(x) (where lg = log2) because
it gives the number of bits needed to encode the out-degree of the node. In this
section we show the depth-one tree (where the root has n edges directly to its
n leaves) is an optimal solution to any instance of CSS where the n leaf weights
are equal and γ(x) = lg(x). This result holds for arbitrary constraint graphs
because the depth-one tree is always a subtree of the transitive closure. Proof of
Theorem 7 is given in [9].

Theorem 7. Let I = (G, γ, (wi)) be an instance of CSS where γ(x) = log(x)
and the n leaf weights are equal. An optimal tree for I is the depth-one tree.

Finally, we noted in Sec. 2 that CSS with degree cost γ(x) = dlog2(x)e is
NP-Hard even with equal leaf weights. This is somewhat surprising given the
depth-one tree is optimal for γ(x) = log(x) with equal leaf weights. The result
holds because the ceiling provides a place where the cost jumps enough so that
any non-optimal tree suffers the impact of this slight increase. A corollary to
Theorem 7 is that the depth-one tree approximates the optimal solution when
γ(x) = dlog2(x)e within an additive constant of 1.

Corollary 1. If (G, γ, (wi)) is an instance of CSS with γ(x) = dlog2(x)e and n
leaf weights are equal, then the depth-one tree approximates the optimal cost tree
within an additive constant of 1.

6 Final Thoughts

While we have positive results for CSS when the initial hierarchy is constraint-
free, and negative results when it is a DAG, we have yet to characterize the
problem for directed trees. We have looked at specific tree topologies, like binary
trees and complete r-ary trees, but even in these cases, have not characterized the
optimal solutions for the linear degree cost. Additionally, we have not explored
probability distributions other than arbitrary and uniform. For example, what
happens with a geometric or Zipfian distribution? Finally, we are interested in
CSS in dynamic environments. For example, on a website, page statistics are
constantly changing. Is there a way to dynamically update the optimal tree in
time proportional to the height of the tree?

References

1. Perkowitz, M., Etzioni, O.: Towards adaptive web sites: Conceptual framework
and case study. Artificial Intelligence 118 (2000) 245–275

2. Bose, P., Czyzowicz, J., Gasienicz, L., Kranakis, E., Krizanc, D., Pelc, A., Martin,
M.V.: Strategies for hotlink assignments. In Lee, D.T., Teng, S.H., eds.: Algorithms
and Computation, 11th International Conference. Volume 1969 of Lecture Notes
in Computer Science., Springer (2000) 23–34

3. Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Martin, M.V.: Evaluation of
hotlink assignment heuristics for improving web access. In: Second International
Conference on Internet Computing, CSREA Press (2001) 793–799

4. Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Martin, M.V.: Enhancing hy-
perlink structure for improving web performance. Journal of Web Engineering 1
(2003) 93–127

5. Karp, R.: Minimum-redundancy coding for the discrete noiseless channel. IRE
Transactions on Information Theory IT (1961) 27–29

6. Golin, M.J., Kenyon, C., Young, N.E.: Huffman coding with unequal letter costs.
In: Proceedings of the thiry-fourth annual ACM symposium on Theory of comput-
ing, ACM Press (2002) 785–791

7. Golin, M.J., Rote, G.: A dynamic programming algorithm for constructing optimal
prefix-free codes with unequal letter costs. IEEE Transactions on Information
Theory 44 (1998) 1770–1781

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, New York (1979)

9. Heeringa, B., Adler, M.: Optimal website design with the constrained subtree
selection problem. Technical Report 04-09, University of Massachusetts Amherst
(2004)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2 edn. The MIT Press/McGraw-Hill Book Company (2001)

