Skip to main content

Complexity of Pseudoknot Prediction in Simple Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Abstract

Efficient exact algorithms for finding optimal secondary structures of RNA sequences have been known for a quarter of a century. However, these algorithms are restricted to structures without overlapping base pairs, or pseudoknots. The ability to include pseudoknots has gained increased attention over the last five years, but three recent publications indicate that this might leave the problem intractable. In this paper we further investigate the complexity of the pseudoknot prediction problem in two simple models based on base pair stacking. We confirm the intractability of pseudoknot prediction by proving it NP hard for binary strings in one model, and for strings over an unbounded alphabet in the other model. Conversely, we are also able to present a polynomial time algorithm for pseudoknot prediction for strings over a fixed size alphabet in the second model and a polynomial time approximation scheme for pseudoknot prediction for strings over a fixed size alphabet in the first model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Joyce, G.F.: The antiquity of RNA-based evolution. Nature 418, 214–221 (2002)

    Article  Google Scholar 

  2. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)

    Article  Google Scholar 

  3. Felden, B., Massire, C., Westhof, E., Atkins, J.F., Gesteland, R.F.: Phylogenetic analysis of tmRNA genes within a bacterial subgroup reveals a specific structural signature. Nucleic Acids Research 29, 1602–1607 (2001)

    Article  Google Scholar 

  4. Tanaka, Y., Hori, T., Tagaya, M., Sakamoto, T., Kurihara, Y., Katahira, M., Uesugi, S.: Imino proton NMR analysis of HDV ribozymes: nested double pseudoknot structure and Mg2 +  ion-binding site close to the catalytic core in solution. Nucleic Acids Research 30, 766–774 (2002)

    Article  Google Scholar 

  5. Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14, 691–699 (1998)

    Article  Google Scholar 

  6. Rivas, E., Eddy, S.: Adynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285, 2053–2068 (1999)

    Article  Google Scholar 

  7. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210, 277–303 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Reeder, J., Giegerich, R.: From RNA folding to thermodynamic matching, including pseudoknots. Technical Report 03, Technische Fakultät, Universität Bielefeld (2003)

    Google Scholar 

  10. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy based models. Journal of Computational Biology 7, 409–428 (2000)

    Article  Google Scholar 

  11. Ieong, S., Kao, M.Y., Lam, T.W., Sung, W.K., Yiu, S.M.: Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs. In: Proceedings of the 2nd Symposium on Bioinformatics and Bioengineering, pp. 183–190 (2001)

    Google Scholar 

  12. Gluick, T.C., Draper, D.E.: Thermodynamics of folding a pseudoknotted mRNA fragment. Journal of Molecular Biology 241, 246–262 (1994)

    Article  Google Scholar 

  13. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology 288, 911–940 (1999)

    Article  Google Scholar 

  14. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley Publishing Company, Inc., Reading (1994)

    MATH  Google Scholar 

  15. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequence. Communications of the ACM 18, 341–343 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lyngsø, R.B. (2004). Complexity of Pseudoknot Prediction in Simple Models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics