dSL: An environment with automatic code
distribution for industrial control systems

Bram De Wachter*, Thierry Massart, and Cédric Meuter*

University of Brussels (ULB)
Département d’Informatique, Bld du Triomphe, B-1050 Bruxelles
{bdewacht, tmassart,cmeuter }@ulb.ac.be

Abstract. We present and motivate the definition and use of the lan-
guage and environment gSL, an imperative and event driven language
designed to program distributed industrial control systems. gSL provides
transparent code distribution using simple mechanisms. Its use allows the
industrial control system’s designer to concentrate on the sequences of
control required; the gSL compiler-distributer taking into account the
distribution aspects. We show the advantages of our approach compared
to others proposed using e.g. shared memory or synchronous languages
like Esterel, Lustre or Signal.

keywords: Industrial process control, transparent code distribution, ex-
ecution migration

1 Introduction

An industrial control system is generally safety critical, event-driven, physi-
cally distributed and controls heterogeneous equipments whose response time
can range from milliseconds to minutes. To be of any use in a real industrial
environment, a control system must be reliable, efficient, robust and simple. Ef-
ficiency is needed to ensure that the controller is not overtaken by the system
it controls. Robustness allows a maximal control even in case of hardware fail-
ure (sensor, actuator or processor). Simplicity is of main importance to allow a
strong monitoring of the system and in case of maintenance or upgrade, to be
able to easily update it without stopping the industrial system controlled.

The burden of combining the physical complexity of the process, the com-
munication schemes of the distributed parts, the need to provide simple and
fast control and the extreme reliability and robustness requirements make the
development of such systems hard.

To simplify the work of the distributed systems designer, it is beneficial to
design a development environment which handles the communication aspects
and allows the programmer to concentrate on the functional aspects of the sys-
tem. Classical solutions based on this idea exist (CORBA, DCOM, EJB). Un-
fortunately, due to the genericness of these solutions, they are quite heavy and
completely hide all of the communication process, making the monitoring of such
systems difficult.

More dedicated solutions to the problem of distributed execution of a sys-
tem with transparent distribution mechanism, have been proposed. Examples of
such solutions are distributed shared memory [NL91], or more specifically in the
domain of control systems, synchronous languages like Esterel, Lustre or Signal
(e.g. [Aub97] and [Gir94]).

Unfortunately, even if shared memory solutions are generally lighter than the
distributed objects one, due to the cache coherence protocol, the time to access

* Work supported by the Region de Bruzelles Capitale, grant no. RBC-BR 227/3298.

the memory can vary greatly and is not predictable. We also motivate why in
our opinion, the latter solutions have, in practice, some drawbacks.

This leads us to the definition of ySI!, a new environment and language de-
signed to program distributed industrial control systems, providing transparent
code distribution using low level mechanisms adapted for the industrial environ-
ments. JSL has been developed by the verification group of ULB? in collaboration
with the company Macq Electronique?

dSL offers both advantages to allow, most of the time, §SL programmers
to ignore all the communication aspects between controllers of the distributed
systems and, by the simplicity of the distribution mechanisms, to easily monitor
the behavior of the synthesized distributed system. gSL can also be formally
modeled and therefore allows links with the world of formal model-checking to
verify the correctness of the systems. Another advantage of this approach is the
ability to debug and verify the centralized program before its distribution.

In the remaining part of this paper, we first, in section 2, detail related
proposals and justify the advantages of our solutions. In section 3 we present
the gSL syntax and in section 4, outline its semantics. In section 5, we describe
the distribution procedure and gSL environment. Finally in section 6, we discuss
our future work.

2 Other approaches and motivations

The problem of distributing applications that control reactive systems has been
studied for many years now and several interesting observations on these works
shaped the design of gSL. In particular, this problem has been studied concep-
tually in the world of process algebra and defined as a correctness preserving
transformation of a centralized specification into a semantically equivalent dis-
tributed one. (e.g. for bisimulation equivalence [Mil89], see [Mas92]). It has also
been studied on various types of labelled transition systems ([CMT99] [SEMO03]).
These works solved part of the problem. However, contrary to other pro-
gramming languages, the notion of variable does not exist in process algebra
and these solutions had therefore to be extended. Work has also been done in
the domain of synchronous languages such as Esterel [BG92], Lustre [CPHP87]
and Signal [LGLL91], which answered questions on how to specify controllers
in a natural and semantically well defined way. Unfortunately, in our opinion,
the distribution of synchronous languages while preserving the semantics, suffer
from a performance problem which, in practice, may not be acceptable.
Indeed, the synchronous programming scheme found in the synchronous lan-
guages supposes that time is defined as a sequence of instants. To preserve deter-
minism, these languages use the concept of synchronous broadcast [BB91] when
several processes are composed in parallel. This implies that parallel branches in
the high level description can be transformed into sequential deterministic code.
The distribution of such programs, for example in Esterel [Gir94], may suffer
from severe performance penalties 1. because the instants must be respected,
requiring a strong resynchronization scheme, and 2. because the distribution

! gSL is the successor of the language SL (Supervision Language, based on ST, an
industrial standard defined in IEC1131-3) developed at Macq Electronique company

2 http://www.ulb.ac.be/di/ssd/groupverif.html

3 a leading company in industrial process control, http://www.macqel.be

is applied on the determinized sequential code. The distribution of Esterel de-
scribed in [Gir94] can be summarized in 4 steps : (1) the centralized program
(after being compiled in a single threaded sequential code) is duplicated on all
participating sites; (2) the instructions that are not relevant to a given site
are removed; (3) for data that is accessed on one site, but calculated on an-
other, communication messages are inserted, and (4) synchronization messages
are inserted to preserve the global instants. Remark that since the initial code
is sequential, this solution suffers from the lack of parallelism (there are some
ways to achieve higher concurrency such as weak synchronization but that does
not preserve safety properties [Gir94]). For Signal, the situation is very similar
[Aub97].

This strong synchronization has several undesirable drawbacks in an indus-
trial environment. First of all, to keep all processes in pace, numerous messages
need to be exchanged at each global instant. Secondly, all participating processes
have to advance at the speed of the slowest process. Finally, the failure of one of
the processes makes the whole system deadlock. To the best of our knowledge,
the synchronous approach has no answer to these shortcomings.

These observations make us believe that, although perfectly suitable for
tightly coupled homogeneous systems and having the benefit of simplicity when
it comes to specifying a controller, the simplicity of the synchronous approach is
too costly in terms of performance when applied to loosely coupled heterogeneous
systems. Moreover, from the experience of our industrial partner specialized in
process control, the strong synchronization of all processes is only rarely needed
and must therefore not be used by default, but made available when needed.

To avoid these drawbacks, qSL rejects the synchronous product used in the
above languages at the detriment of indeterminism, and adopts an asynchronous
composition of instantaneous (atomic) code and asynchronous (sequential) code.
Asynchronous composition is therefore the keyword in gSL’s design. The instan-
taneous code uses an event driven scheme and, for a given component, must
be able to run without any synchronization that would make it wait on other
components. This asynchronous composition has the advantage that the failure
of one site does not introduce deadlocks in atomic code on other sites. More-
over, as we detail later on, gSL offers a way to detect and handle network or
hardware failures. The sequential code, on the other hand, can be executed in a
totally distributed and cooperative manner. These assumptions, of course, im-
ply some restrictions on code and have consequences on the way data values are
transmitted between distributed processes, as explained in section 5.

For the distributed execution of the sequential code, several models are pro-
posed in the literature. These models can be divided into two sets based on
the way they achieve data locality : either move data, or move the execution.
Many systems have been studied that use the first solution, such as Distributed
Shared Memory systems [NL91]. These systems, although offering a transparent
distributed environment, suffer from undesirable border effects that make them
unusable in an industrial environment. The need to replicate data to make such
systems work in a performance responsible way [HHG99], may cause thrashing?
or false sharing® and these systems therefore do not guarantee stable perfor-

4 The effect of two (or more) processes competing for exclusive access to a given
variable, resulting in high communication traffic and almost no productiveness

5 Caused when two (or more) variables, used by different processes, are in the same
page causing unnecessary communication traffic

mance as observed in [NL91]. Secondly, since data moves around, the supervision
of such systems and its error-recovery - both indispensable features in industrial
applications - may become too complicated [MP97] on qSL’s target hardware.

For these reasons, dSL uses the second solution, which consists of moving the
execution to the data, a concept known as process or thread migration [Esk90].
In this concept, a thread of execution is halted on one site, its context (local vari-
ables and program counter) is sent to another site, where its context is restored
and execution continues. Thread migration is known to enable dynamic load dis-
tribution, fault tolerance, eased system administration, data access locality and
mobile computing [JC02b]. In our system, all instructions and global variables
are statically assigned to the participating sites and thread migration, decided
at compile time, is used to obtain data access locality. The benefits are twofold:
(1) following the state of the system is very easy, and (2) all communication and
synchronization messages can statically be calculated, resulting in a predictable
execution. However, we lose the benefits of dynamic load balancing and fault
tolerance since the migration policy used in gSL is static.

The design of §SL can thus be synthesized as a hybrid execution scheme com-
posed of two types of code : local or atomic instantaneous code, and distributed
sequential code that executes using statically calculated thread migration.

3 The gSL concept

dSL is an imperative language with static variables. Each variable can be either
(1) internal to a program, (2) linked to an input (sensor), or (3) linked to an
output (actuator). gSL is event driven. This allows to specify that when the
value of a boolean expression switches from false to true, some code must be ex-
ecuted. For instance, when x >= 0 then run_motor1(); end_when will trigger
the method run motor1() every time the variable x switches from a negative to
a positive value. gSL also offers limited Object Oriented features.

Moreover, the domains of all SL primitive types are extended with the spe-
cial value unknown. A variable linked to an I/O may take this special value in
case of hardware failure. The unknown value propagates in expression evaluation
and can be tested for with the builtin is_unknown statement. As shown in fig-
ure 1 this allows to construct more robust programs. In this figure, a sensor is
duplicated in order to ensure correct behavior in case of hardware failure. Note
that the body of a when whose condition evaluates to unknown is not executed.

WHEN templ > 30 AND WHEN temp2 > 30 AND WHEN IS_UNKNOWN(templ) AND
NOT handled THEN NOT handled THEN IS_UNKNOWN (temp2) THEN
handled := TRUE; handled := TRUE; alarm := TRUE;

END_WHEN END_WHEN END_WHEN

Fig. 1. Fault tolerance in §SL with unknown.

A program in gSL is written in a centralized manner, as if every input or
output can be accessed without the need for explicit communication or synchro-
nization (we shall see that some restrictions are imposed to apply this principle).
The designer must then fill in a localization table to specify the physical localiza-
tion (execution sites) of each I/O. Other (internal) variables are either global in
which case their localization will statically be fixed by the distributer, or local in

which case they can move during execution. Since global variables do not move
during execution, the distributer has to ensure that an instruction accessing a
global variable is executed on the site of that variable. An execution site can be
either a supervisor (typically a computer, possibly with a user interface) or a
programmable controller (called automata from here on, which are connected to
the industrial equipment through the sensors and actuators).

The GSL compiler/distributer automatically distributes the code among the
execution sites, trying to minimize communications, and compiles the distributed
code to an assembler-like language. This assembler-like code is interpreted by a
dSL Virtual Machine. A gSL virtual machine is available for both supervisors
and automata. This is illustrated in figure 2.

This approach has many benefits such as (1) maintainability (only one lan-
guage is used to program both the supervisors and automata) (2) flexibility (any
change of an actuator or a sensor does not imply changes in the program),(3)
simplicity (since communication / distribution is done implicitly, the program-
mer does not need to come up with synchronization schemes to handle particular

tasks).
dsL
Source
dsL
- Compiler/Distributer

A gSL program contains several parts. (1) class declarations, (2) global vari-
ables declarations - including all I/O variables (3) method definitions (4) when
definitions (5) sequence definitions and (6) a program initialization. Each Input
(resp. Output) variable v;, (resp. vout) is linked to a hardware sensor v, (resp.
actuator v},,). .

Network

I VM Code --- .

VM Code

Fig. 2. gSL

Atomic and sequential code. The design of gSL has been dictated by the
execution paradigm requiring an immediate reaction to events and their instan-
taneous treatment. In practice this forbids any implicit synchronization during
the execution which implies inter-site communications (through a relatively slow
network). A clear way must therefore exist to express that inter-site synchroniza-
tion is allowed. Hence, in gSL, there is a distinction between:

— atomic code which must be executed in an atomic manner and therefore
cannot be distributed,

— sequential code which can be distributed and use inter-site communications
to synchronize or transfer values between sites.

Code inside a WHEN (the instruction inside its body and the condition) is
forced atomic, and must therefore be local to a given site. Sequential code is
defined through the use of the SEQUENCE construct. The code inside a METHOD
can be either atomic or sequential depending on the context in which it is called.

CLASS Heater
control, state : INT;

maintenance : BOOL; 5
; WHEN heater.maintenance THEN // w2
END_CLASS alarm := TRUE;
GLOBAL_VAR END_WHEN
heater : Heater; WHEN ~temperature < O THEN // W3
Zfﬁfﬁrafgge’ fuel_cost : éggi. IF (NOT heater.maintenance) THEN
END VAR : ’ LAUNCH set_heater(1);
- END_IF
SEQUENCE set_heater(new_state : INT) END_WHEN
heater.control := heater.control + 1; ~
heater.state := new_state; WHEN "temperature > 29 THEN // w4
IF (heater.state == 1) THEN IF (NOT heater.maintenance) THEN
led := TRUE; LAUNCH set_heater(0);
fuel_cost := fuel_cost + 10; END_IF
ELSE END_WHEN
led := FALSE;
END_IF PROGRAM
END_SEQUENCE heater.control := 0;
- heater.maintenance := FALSE;
WHEN IN Heater (control==1000) THEN // Wi LAUNCH set_heater (temperature<0);
control := 0; END_PROGRAM
maintenance := TRUE;
END_WHEN

Fig. 3. A temperature control system in gSL

If a METHOD can be reached from a WHEN, then the body of this METHOD is assumed
to be atomic. It is assumed sequential otherwise. To relax the atomic constraints
in a WHEN, two mechanisms have been defined (see figure 3) :

— The LAUNCH keyword allowing to call a SEQUENCE or a METHOD asynchronously
(i.e without waiting for the control to return from the SEQUENCE or the
METHOD), and possibly on a distant site. Note that a SEQUENCE can only be
called asynchronously (using LAUNCH) and that it cannot have more than one
instance executed simultaneously.

— The “~” operator allowing to reference the last locally known value of a
variable possibly on a distant site. When the value of a variable is changed
on the site governing it, its new value is sent to all necessary sites. One must
be careful with tilded variables since it is never guaranteed that the value
of the tilded variables corresponds to the real value of the variable. It can
be interesting to use if the exact value is not imperative (e.g. temperature
which evolves slowly), or if the program is built such that it is known that
the tilded value is equal to the real one (e.g. using a procedure for explicit
synchronization). A site that has a tilded copy of , regularly checks if the
site owning x is still alive. If not, the copy is set to unknown, indicating
hardware or network failure.

dSL example. To illustrate the gSL concepts, let us examine a small example
of a temperature control system. In this system, a temperature sensor is linked to
an input variable temperature. A heater is turned on (off) if the temperature
is below 0° (above 20°). The state of the heater (on/off) is controlled by the
output variable heater.state. Moreover, there are two indicators on a control
panel. The first indicator, (linked to the output variable led) is used to indicate
the state of the heater, and the second (linked to the input variable alarm) is
updated when the heater has been turned on a certain number of times. An
additional variable fuel_cost estimates the amount of fuel consumed by the
heater. The gSL program is presented in figure 3.

4 The gSL semantics

In this section, we introduce the jSL semantics, concentrating on the distributed
aspect of the language. We therefore skip a complete and formal review of well
known program issues like method call, control flow, expression evaluation and
the limited object oriented features.

The behavior of a gSL program depends on the localization of its variables.
Our goal is to describe the semantics of a gSL program independently from any
localization information. For that, we introduce the notion of mazimal distri-
bution, which expresses the most permissive way to distribute a qSL program.
The semantics of a JSL program is then defined by the set of all behaviors of its
mazximal distribution.

Maximal distribution. The maximal distribution is deduced from the locality
constraints imposed on global variables by the atomic code, e.g (1) two global
variables appearing in the same instruction and (2) two global variables accessed
by the same WHEN must be governed by the same site. This defines a partition of
the set of variables where each subset of the partition corresponds to an execution
site. A formal description of how to find the maximal distribution can be found
in [WMMO04].

Process behavior. The behavior of a gSL program P in its maximal distribu-
tion is given by
P ..|| P,

where each P; is an independent process executing the part of code of P handling
all the variables local to site i. These processes communicate through F1ro-
channels between each pair of processes. We will note F;; the Firo-channels
used from a process P; to another process P;.

Every process P; is an infinite loop. Each cycle (i.e iteration) is composed
of three phases: (1) the input phase, where each physical input is sampled and
where the variables linked to those inputs are updated, (2) the process phase
where the necessary WHENs are triggered and where the messages from other
execution site are processed and (3) the output phase where the physical outputs
are updated according to the variable they are linked to. The pseudo-code for
this input-process-output cycle is given by :

//input phase:

for each v;, € P; linked to an input do v;, < v}, done

//process phase:

for each w € W - Varw(w) C P; do process w done

for each j € {1,2...,i— 1,7+ 1,...,n} do process messages from F}; done
//output phase:

for each v,u: € P; linked to an output do v},; < vou: done

where v}, (v},;) denotes the hardware value of the variable v, (vout), W the
set of WHENs, and Vary (w) the set of variables accessed by when w (for more
details see [WMMO04]).

Processing WHENs. To each WHEN, we associate a hidden variable v,, keeping the
previous value of the condition. This allows to trigger w of the form “WHEN”
cond “THEN” instruction_list “END_WHEN” only when the condition switched
from false to true. Note that the WHENs are processed in their order of appearance
in the gSL program. The pseudo code for the execution of w is :

if cond N —v,, then v,, «— true; execute instruction_list else v,, «+ cond fi

Processing Messages. Conceptually, there are two types of messages: (1) mes-
sages concerning the update of tilded variables and (2) messages concerning
the remote execution of sequential code. The first kind of message is of the
form (v, new_value). Processing such a message simply consists in assigning this
new_value to the local copy of v (see Assignment hereafter). The second kind
of message, corresponding to the LAUNCH or continuation of sequential code, is
simply a label. Indeed, when a process must execute remote code, it posts a
message with the label corresponding to the first instruction of that code to the
governing site. Processing such a message consists of the execution of the code
associated with that label, until it reaches the end of that code or is migrated
to another site.

«“) @

Assignment. An assignment of the form v “:=" e executed by the site S;
(v € S;) has the usual result (the variable v is set to value of the expression
e), but gSL adds two features to that. First of all, all WHENs w are processed,
as explained previously. Secondly, if v has asynchronous distant copies (i.e. “v),
then these must be updated. Therefore, for all sites S; governing a ~v, a message
is posted in F; ; with v and its new value (i.e. the value of e). Note that the
special behavior for assignment may cause infinite recursion in the processing of
whens. A simple static check allows us to reject programs that may contain this
unacceptable infinite recursion.

5 Static distribution process of gSL

In this section, we discuss ¢SL’s distribution algorithms and the gSL virtual
machine. First, for atomic code, the distributer has to assign a unique localiza-
tion to each instruction and each global variable such that the constraints on
atomic code are met. Next, for the sequential code, the instructions that were
not previously dealt with must be localized, taking into account the localization
already imposed on the global variables at the level of the distribution of the
atomic code. A second algorithm is introduced to solve this problem. Finally,
we show how, from the computed information on localization, the distribution
is actually achieved.

Satisfying the constraints on atomic code. In order to calculate indepen-
dent components, and to satisfy the localization constraints on atomic code, a
dependency graph is constructed whose purpose is to take into account the depen-
dencies between all instructions and global variables involved in the WHEN-part
of the gSL program.

Informally, a vertex in this graph is either (1) an instruction that appears
or is reachable through synchronous call from the body of any WHEN or (2) a
non tilded global variable appearing in these instructions. Edges exist between
two instructions when control may flow from one instruction to the other, while
edges between an instruction and a variable exist if the instruction contains the
variable.

Within this graph, an edge states that both vertices must be on the same site
to keep atomic code local to that site. Each connected component is indepen-
dent of the others and may be localized on a separate site. If inside one of the

components, different sites are specified by the localization table, the program
is not distributable. In this case, the designer must relax the atomic constraints
by introducing LAUNCH, “~” or SEQUENCE. Otherwise, if for a given component at
least one variable appears in the localization table, all vertices, i.e. instructions
and global variables, are localized on the site specified in the table. If this is not
the case (not a single variable in the component is present in the localization
table), the component can be assigned to any site, e.g. using a load-balancing
algorithm.

Remark that this algorithm forces not only the localization of instructions
from atomic code, but does the same for all instructions in sequential code that
use global variables also used in atomic code. It is up to the algorithm described
in the next paragraph to localize the remaining instructions.

Given the following localization table :

temperature Site 2 heater.state Site 2
alarm Site 1 heater.control Not imposed
led Site 1 heater.maintenance |[Not imposed
fuel_cost Not imposed

the dependency graph, obtained by applying the previous method on the
example of figure 3 is represented in figure 4.a (the vertices W; correspond to all
instructions in W; of figure 3).

Remark that in this example, all variables but fuel_cost are localized once
the atomic constraints are fulfilled and that imposing heater.control on a dif-
ferent site than heater .maintenance would make the program not distributable.
Also remark that fields from a same class do not necessarily need to be localized
on the same site. The ~ in W3 and W4 relaxes the atomic constraints, and allows
temperature and heater.maintenance to be localized on different sites.

Localizing remaining sequential instructions. The sequential instructions
not constrained by the previous algorithm can be localized anywhere. However,
it is important to find a good, and if possible, optimal localization. Indeed, as
we show further on, between each pair of consecutive instructions of a sequence
(control may flow directly from one to the other), localized on different sites,
the distributer inserts a migration point so that execution stops on the first
site and may continue on the second site. A bad localization may result in a
program containing unnecessary migration points lowering the performance of
the program at runtime.

To evaluate the performance of a particular localization, we introduced the
notion of weighted colored control flow graph in [DeWO03] : a control flow graph
with weights on the edges expressing the mean number of times control will
flow following each edge during execution. In the case of an IF, these weights
are based on the estimated probability of the test being satisfied. For a WHILE,
they are based on an estimation of the mean number of times the body will be
executed. The weights are then obtained by recursively combining these values
for nested control structures (e.g. an IF branch with probability .3 nested in a
loop executing 5 times results in a weight of 1.5). The colors on the vertices model
the localization of each instruction (vertices with the same color are localized
on the same site). We then define the communication load as the sum of the
weights of the edges between vertices of different colors, which corresponds to
the mean number of migrations during execution.

heater.control := heater.control+1

heater.state := new_state

[

[¢)
heater.

heater. heater.

control maintenance | | w3 state
VA led := TRUE led := FALSE
[¢]
W2 alarm O.Sl
0.5
fuel_cost fuel_cost := fuel_cost +1

0_5\‘ 4

a. [site1 [site2 b. o

Fig. 4. a. Satisfying constraints on atomic code, b. Localizing sequential instructions.

The problem of finding the localization minimizing the communication load
can be defined as an instance of the NP-complete Colored Multiterminal Cut
problem which finds the optimal coloring for the uncolored vertices[BCK92]. For
a formal definition of the problem and efficient heuristics, which are implemented
in our system, see [DeW03].

The figure 4.b illustrates this algorithm based on the example in figure 3 and
the results of the previous algorithm. Remark that the algorithm should localize
fuel_cost on site 1 in order to minimize the communication load.

Executable distributed code. Once every variable and instruction is uniquely
assigned to a certain site, the distributer inserts migration points between in-
structions localized on different sites. The migration of the local context is based
on extensive use of def-use chains (definition-use, a classical data-flow analysis
technique). Since we have complete knowledge of live variables, the distributer
can insert code that migrates only those local variables that are updated on the
current site and read elsewhere. Technically, context migrating code builds mes-
sages to ask the remote update of either register or stack entries on distant sites.
A valuable point of our migration method is that in contrast to many systems
where the complete stack is migrated [DR98,JC02a], JSL can use the informa-
tion provided by the compiler to migrate only what is needed, saving valuable
bandwidth. However, more instructions have to be interpreted to migrate the
context than would be needed if the complete stack was migrated. Since in our
target platform bandwidth is crucial because network speeds may be of very low
quality, our solution yields higher performance.

Execution environment. jSL uses virtual machines. This is clearly indispens-
able since qSL’s heterogeneous target platform consists of servers with a graphi-
cal user environment developed for Linux,UNIX,Windows on Intel or Power-PC
processors and PLCs (16 bit Motorola 68340 @ 25Mhz with 4MB RAM of which
2MB is flash, no OS) interfaced to the environment. The gSL Virtual Machine,
implemented for both server platforms and for the PLC hardware, can be clas-
sified as a CISC (i.e. Complex Instruction Set Computing) architecture, inter-
preting low level three-operand code, is single threaded and has a fixed amount

of allocated memory. Simplicity and performance are essential in its design. The
instruction set is very rich to optimize the interpretation/execution time ratio. In
particular the instruction set contains specific instructions handling execution-
and context-passing. Communications are guaranteed to respect message order-
ing and to be error free. In our implementation we use a simplified TCP/IP
protocol stack.

The absence of a scheduler and preempted code is a design choice that aims
at simplicity. Code is simply executed until it ends or migrates to another site.
There is therefore no performance penalty for context switching and no need for
a multi-threaded operating system.

An important feature of JSL’s execution environment is that the memory size
is bounded. T'wo reasons ensure this property : first, there is no dynamic memory
allocation in 3SL, so global memory can statically be allocated. Secondly, only
a bounded number of processes with a local context coexist during execution.
Indeed, each site has one process that handles uninterruptible synchronous code
and remotely LAUNCHed methods. Finally, we can remark that since sequences
have only one running instance at a time and that stacks are limited to a certain
size, resulting in a statically known amount of memory.

In its current state, the JSL compiler/distributer and VM have been im-
plemented in 20k+7k lines of C/C++ code as a proof of concept. The present
implementation of the VM fits into 1IMB of memory, including the dynamic
program loader, debugger and interpreter. Further development, separate com-
pilation, dynamic types, user interface, etc. is taken over by Macq Electronique.
The introduction of pointers makes the static distribution process of §SL hard.
We are working on a solution that uses extensive pointer analysis. Since gSL is
integrated into Macq Electronique’s OBviews, a commercial development envi-
ronment and toolkit for the programming and supervision of PLCs, it benefits
from a high number of existing utilities. The localization table as well as the
description of types and global variables uses the graphical user interface of OB-
Views’ database subsystem. The §SL Virtual Machine is compatible with the
OBViews’ supervision subsystem that allows, amongst others, to create graphi-
cal representations of the controlled system, stimulated by the state of the con-
trolling gSL program. In [DMMO03] we studied a controller, specified by a 200
lines SL program, for the locks of a canal where various distributed constraints
have to be respected (e.g. not to open both gates of the same lock). The resulting
VM code was distributed on 3 PLCs. As a proof of concept, we actually built
a small scale model of the locks using Lego Mindstorms™™ and interfaced the

PLCs to the engines and sensors®.

6 Future work

The main research we are conducting now and will pursue in the future is to
enable the formal verification of gSL. A first experiment has been conducted
on the canal locks example of [DMMO03], where the qSL source code is trans-
lated into Promela, and verified for the correctness of safety properties by the
Spin model checker. We are working on the automatic translation of SL to
Promela and more generally on an efficient way to verify jSL programs avoiding
the state space explosion problem. The indeterminism in gSL is caused by the
asynchronous composition and communications but not by the gSL code itself.

6 Pictures and videos available at http://www.ulb.ac.be/di/ssd/bdewacht /dsl

We hope to be able to use this fact to reduce the state space in addition to the
classical methods like abstraction, symmetry and partial order reduction. We
are also investigating how lightweight verification can offer a solution between
testing and exhaustive verification. In order to achieve this validation, we devel-
oped a prototype debugger capable of generating traces. The model checker is
used to explore the state space within a certain diameter of those traces.

In the case of exhaustive verification, we need to obtain a closed system. In
order to do so, we must build a sufficiently detailed specification of the envi-
ronment (i.e. the industrial process to control). This problem can be simplified
by offering the user a verified library of pre-constructed and parameterizable
common environments.

Further topics include efficiency (real-time behavior) and robustness issues.

References

[Aub97] P. Aubry. Mises en oeuvre distribues de programmes synchrones (thése). Phd thesis,
IFSIC, Rennes, France, October 1997.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.
In Proceedings of the IEEE, volume 79, pages 1270-1282, 1991.

[BCK92] E. Balas, G. Cornuéjols, and R. Kannan, eds. Algorithms and min-max theorems for
certain multiway cuts. In Proc. of the 2nd Integer Programming and Combinatorial
Optimization Conference, pages 334-345. Carnegie Mellon University, May 1992.

[BG92] Gerard Berry and Georges Gonthier. The esterel synchronous programming language:
Design, semantics, implementation. Science of Computer Programming, 19(2):87-152,
1992.

[CMT99] I. Castellani, M. Mukund, and P. S. Thiagarajan. Synthesizing Distributed Transition

Systems from Global Specification. In Foundations of Software Technology and Theo-
retical Computer Science, pages 219-231, 1999.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language for
programming synchronous systems. Conf Rec 14th Ann ACM Symp on Princ Prog Langs,
1987.

[DeWo03] Bram DeWachter. Code Distribution in the dsl Environment for the Synthesis of Industrial
Process Control. Technical report, U.L.B., 15 January 2003.

[DMMO03] Bram DeWachter, Thierry Massart, and Cledric Meuter. An experiment on synthesis and
verification of an industrial process control in the dsl environment. Proceedings of the
3rd Automated Verification of Critical Systems (AVoCS03), Technical Report DSSE-TR-
2003-2, DSSE, Southampton (GB), April 2-3 2003.

[DR98] B. Dimitrov and V. Rego. Arachne: A portable threads system supporting migrant threads
on heterogeneous network farms. IEEE Transactions on Parallel and Distributed Sys-
tems, 9(5):459—, 1998.

[Esk90] M. Rasit Eskicioglu. Design issues of process migration facilities in distributed systems.
In IEEE Computer Society Technical Committe on Operating Systems and Application
Environments Newsletter, volume 4, pages 3-13, 1990.

[Gir94] A. Girault. Sur la Répartition de Programmes Synchrones. Phd thesis, INPG, Grenoble,
France, January 1994.

[HHGO99] J. Hennessy, M. Heinrich, and A. Gupta. Cache-coherent distributed shared memory:
Perspectives on its development and future challenges. Proc. of the IEEE, Special Issue
on Distributed Shared Memory, 87(3):418-429, 1999.

[JCO02a] H. Jiang and V. Chaudhary. Compile/run-time support for thread migration. In Pro-
ceedings of the 16th International Parallel and Distributed Processing Symposium, Fort
Lauderdale, Florida, April 2002.

[JCO02b] H. Jiang and V. Chaudhary. On improving thread migration: Safety and performance.
In Proceedings: 9th International Conference on High Performance Computing 2002,
volume 2552 of LNCS, pages 474-484, Berlin, Germany, December 2002. Springer-Verlag.

[LGLL91] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Programming real time appli-
cations with signal. Proceedings of the IEEE, 79(9):1321-1336, September 1991.

[Mas92] T. Massart. A calculus to define correct transformations of LOTOS specifications. In
Proceedings of the FORTE’91 conference, pages 281-296, 1992.

[Mi189] R. Milner. Communication and Concurrency. PHI Series in Computer Science. Prentice
Hall, 1989.

[MP9I7] C. Morin and I. Puaut. A survey of recoverable distributed shared memory systems.

IEEE Trans. on Parallel and Distributed Systems, 8(9):959-969, 1997.

[NL91] B. Nizeberg and V. Lo. Distributed shared memory: A survey of issues and algorithms.
IEEE Computer, vol. 24, no.8, pp. 52-60, Aug. 1991.

[SEMO03] Alin Stefinescu, Javier Esparza, and Anca Muscholl. Syntesis of Distributed Algorithm.
In To appear at 14th international conference on concurrency theory (CONCUR 2003),

2003.

[WMMO04] Bram De Wachter, Thierry Massart, and Cédric Meuter. dsl : An environment with auto-
matic code distribution for industrial control systems. Technical Report 512, ULB, 2004.
Submitted to OPODIS 2003: 7th International Conference on Principles of Distributed
Systems.

