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Abstract. In this paper we summarize syntax and semantics of modules of ele-
mentary signal nets and explain how to synthesize the control for discrete event
systems modelled by such modules.

Signal nets, introduced in [8,9,10,12], are based on Petri net modules which
communicate via signals. Two kinds of signals are employed, namely active sig-
nals which force occurrence of (enabled) events, and passive signals which en-
able/prohibit occurring of events. Modelling with such modules appears to be
very natural from an engineering perspective. It enables hierarchical structuring
and supports the locality principle.

Given an uncontrolled system (a plant), modelled by a module of an elementary
signal net, and a control specification, given as a regular language representing
the desired signal output behavior of this system, we show step-by-step how to
automatically synthesize the maximally permissive and nonblocking behavior of
the plant respecting the control specification. Finally, we show how to synthesize
the controller (as a module of an elementary signal net) forcing the plant to realize
the controlled behavior.

1 Introduction

In complex applications, models are usually constructed in several steps and are de-
scribed on several levels of abstraction. Systems are parts of bigger systems, such as a
robot is a part of a manufacturing cell. Conversely, many systems are composed from
subsystems. This fact motivates the principle of modularity and compositionality. Con-
sidering a certain level of abstraction, one does not need to reason about all details of
subsystems which were taken into consideration on a sublevel. It is usually sufficient to
consider just those parts of subsystems which are in contact with the environment, i.e.
the "input/output" parts and to consider the "inside" of the subsystems being a "black
box". Such an approach supports local changes in the whole system, i.e. it enables the
replacement of one subsystem by another with the same "input/output"-functionality.
Considering discrete event systems (DES), Petri nets are a very successfully suc-
cessfully used modelling formalism [13,29]. The main reason is that they offer both,
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nice graphical representation and formal background. In addition, modelling with Petri
nets is popular because Petri nets usually allow a more compact and structured rep-
resentation of the system behavior than automata. There are many case studies using
Petri nets in modelling and control and many tools supported by sophisticated analytical
methods. However, Petri nets (at least in their basic version) do not support the above
mentioned features which are very essential for engineering applications: The absence
of input/output structure seems to be a strong limitation. Additionally, the important
feature of hierarchical structuring is not directly supported by Petri nets.

There are many compositional frameworks for Petri nets, mostly based on gluing
common places and/or transitions. However, it is desirable that the composition
of modules preserves the structure of modules. Modules of signal nets constitute
an extension of Petri nets which supports input/output structuring, modularity and
compositionality in an intuitive graphical way. This formalism was developed in a
series of papers under the name net condition/event system and is widely used for
modelling of complex DES, see e.g. [9,10,12]. A signal net is a Petri net enriched by
event signals, which force the occurrence of (enabled) events, and condition signals
which enable/prohibit the occurrence of events. Adding input and output signals to a
signal net, one gets a module of a signal net. Modules of signal nets can be composed
by connecting their respective input and output signals.

In the first part of this paper we summarize syntax and semantics of modules of
elementary signal nets, where the underlying Petri nets are elementary Petri nets. In the
second part, we give a survey on control synthesis for DES modelled by modules of
elementary signal nets. In this part technical details are replaced by illustrations (for a
detailed presentation see [18,19]). Furthermore, a brief comparison to the supervisory
control synthesis approach based on automata is provided.

In the problem of control synthesis for DES, a system is given which can interfere with
its environment via inputs and outputs. This is the object to be controlled, and it is called
"plant". The goal of control is to ensure a specified behavior of this plant which is given
as a set of desired sequences of inputs and outputs. The plant is therefore equipped with
sensors that provide information about some (usually not all) so called observable states
and state transitions of the plant. It is also equipped with actuators that allow to control
the behavior of the plant by enforcing or preventing some (usually not all) so called
controllable state transitions in the plant. The central idea is that plant and control build
aso called closed loop (or feedback loop) which means, roughly speaking, that the control
gives inputs to the actuators of the plant based on the observed sensor outputs of the plant.

Modelling a plant by a module of a signal net, sensors in the plant may provide
condition signals to give information about a reached observable state to the control. For
example, a condition signal can indicate that a process variable of the plant is within
a given range of its value. Sensors in the plant may also provide event signals to give
information about the occurrence of an observable state transition to the control. For
example, it can be indicated by an event signal that a process variable in the plant is just
reaching a threshold.

A controller that controls the plant may use both types of signals as well. Via
condition signals, the controller prohibits/enables controllable state transitions in the



272

plant whereas via event signals, the controller tries to force controllable state transitions
in the plant to occur.

In [18,19], we identify which event signal inputs have to be sent to the plant mod-
ule in order to observe only such sequences of event signal outputs which are prefixes
of and can be completed to sequences of event signal outputs belonging to the control
specification. This control specification is given as a regular language. The resulting
output behavior of the plant is maximal with this properties. In other words, we con-
struct a language over event signal inputs and outputs of the module of the plant which
represents the maximally permissive nonblocking controllable behavior satisfying the
control specification. Finally, we show in [19] that for such a behavior there exists a
control module (of a signal net) which, composed with the plant module, realizes this
behavior. As the main result of [19], we construct such a control module.

The formal definitions in [18,19] are based on low-level Petri nets, where tokens
carry no data structure. In particular, the interfaces and the communication between
modules are low-level. These elementary signal net models are close to the physical
level (similar to assembler code in the area of programming languages). Of course, one
can achieve more compact representations (for example of protocols, services, data types
et cetera) by using appropriate high level concepts (such as high-level Petri nets in this
case). However, the fundamental problems arising in controller synthesis considered in
[18,19] (such as observability and controllability of behavior) are of low-level nature.
For real applications, a higher-level modelling language would be more suitable. In [5]
we present such a language based on signal nets extended by high-level features (such
as data types, annotated condition signals, timers etc.) and employed it in a case study
from automotive industry (modelling of controllers for the new AUDI A8 model).

Several related work employs modules of signal nets in the control of discrete event
systems. In [9,10,12] effective solutions for particular classes of specifications, such as
forbidden states, or simple desired and undesired sequences of events are described. An
approach for control specification given by cycles of observable events was presented in
[21]. Up to recent time, the problem of control synthesis for the general class of specifica-
tions given by regular languages (as in supervisory control theory for systems modelled
by automata) remained open for modules of signal nets. In [19], we filled this gap.

The paper splits into two parts: In the first part we present modules of elementary
signal nets with definition of step semantics, composition rules and input/output behav-
ior. In the second part we illustrate control synthesis of DES with modules of elementary
signal nets: In Subsection 3.1 we show how to automatically synthesize the maximally
permissive nonblocking controllable behavior of a module of a signal net (representing
the plant) respecting a given regular specification language. In Subsection 3.2 we present
how to construct the controller as a module of a signal net. Finally, we take a short view
on methods that use the structure of some models rather than the complete enumeration
of the state space in Subsection 3.3. A conclusion and an outlook on further work is
given in Section 4.
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Part I

2 Modules of Signal Nets

As mentioned in the introduction, we use an extension of elementary Petri nets (1-safe
Petri nets) which allows to model condition and event signals, supports modularity, and
preserves the essential benefits of Petri nets. We assume the underlying elementary Petri
nets to be equipped with the so called first consume, then produce semantics (since we
allow loops, see e.g. [16]). The first step of the extension is to add two kinds of signals,
namely active signals which force the occurrence of (enabled) transitions, and passive
signals which enable/prohibit the occurrence of transitions. These signals are represented
respectively by two kinds of arcs. A Petri net extended with such signals is simply called
a signal net.

Active signals, also called event arcs, are represented by arcs connecting transitions.
They are interpreted in the following way: An event arc leading from transition ¢; to
transition ¢, specifies that, if transition ¢; occurs and transition 5 is enabled to occur then
the occurrence of ¢4 is forced (synchronized) by the occurrence of ¢, i.e. then transitions
t1 and ¢4 occur in one (synchronized) step. If ¢5 is not enabled, ¢; occurs without o,
while an occurrence of ¢ without ¢; is not possible. As an example, an event turning on
a switch would be modelled via transition ¢, while the event lighting the bulb would be
modelled via transition ¢.

In general, (synchronized) steps of transitions are defined inductively in the above
way. Every step starts at one so called spontaneous transition which is not synchronized
by another transition. It is required that there are no cycles of event arcs.

Consider a transition ¢ which is synchronized by transitions ¢4, ... ,%,,n > 2. Then
there are two dialects in the literature to interpret such a situation. For simplicity we
consider the case n = 2. In the first approach [9,10,12] both transitions ¢; and ¢, have
to agree to synchronize ¢. Thus the only possible step of transitions involving ¢ has to
include transitions ¢; and ¢, too. We call this dialect AN D-semantics (see Figure 1,
part (b)). In the second one [4] the occurrence of at least one of the transitions ¢ and ¢
synchronizes transition ¢, if ¢ is enabled. We call this dialect O R-semantics (see Figure
1, parts (a) and (c)).

In general, the relation given by event arcs builds a forest of arbitrary depth. We
introduce the most general interpretation, where we distinguish between O R- and AND-
synchronized transitions. An O R-synchronized transition demands to be synchronized
by at least one of its synchronizing transitions, whereas an A/ND-synchronized transition
demands to be synchronized by all of its synchronizing transitions. Since we allow
loops w.r.t. single transitions, i.e. transitions connected to a place with flow arcs in both
directions, we also allow loops w.r.t. steps of transitions (see Figure 2, part (a)).

Passive signals are expressed by so called condition arcs (also called read arcs or test
arcs in the literature) connecting places and transitions. A condition arc leading from a
place to a transition models the situation that the transition can only occur if the place
1s in a certain state but this state remains unchanged by the transition’s occurrence (read
operation) (see Figure 2, part (b)). There are no condition arcs leading from a transition
to a place. Several transitions belonging to a synchronized step can test a place to be in a
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Fig. 1.In (a) the enabled steps are {¢1,t} and {2, t}. (b) shows a signal net with AN D-semantics:
Here the only enabled step is {t',¢1}, i.e. t is not synchronized. In (c) the same net is shown in
O R-semantics: Here we have the enabled step {t’, ¢1,t}, i.e. t is synchronized.
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Fig. 2. (a) shows an enabled step {¢1,t}. The left part of (b) shows an enabled transition ¢ which
tests a place if it is marked. The occurrence of ¢ leads to the marking shown in the right part of
(b). Figures (c) and (d) again present situations of an enabled step {1, ¢}.

certain state via passive signals simultaneously since the state of this place is not changed
by their occurrence (see Figure 2, part (c)). We also allow that a transition belongs to
a synchronized step of transitions testing a place to be in a certain state via a passive
signal, whereas the state of this place is changed by the occurrence of this or of another
transition in this step. That means we use the so called a priori semantics [15] for the
occurrence of steps of transitions, where testing of states precedes changing of states by
occurrence of steps of transitions (see Figure 2, part (d)).

As usual, places, transitions and the flow relation are drawn using circles, boxes and
arrows respectively. To distinguish between O R- and AN D-synchronized transitions,
AN D-synchronized transitions are additionally labelled by the symbol ”&”. Event arcs
and condition arcs are visualized using arcs of a special shape, as shown in Figure 1 and
Figure 2.

Let x be a place or a transition: *x is the set of transitions (places) connected with
by an arc ingoing to z, called preset of x. ° is the set of transitions (places) connected
with x by an arc outgoing from x, called postset of x. For a transition ¢, we denote in a
similar fashion: T is the set of places which are tested on presence of tokens by ¢ (via
a condition arc), called the positive context of t. Given a set & C 'I' of transitions, we
extend the above notations to *£, £€* and T¢ via the union of sets.

A transition ¢ is enabled at a marking m if all places in *t and Tt are marked and
the places in ¢* \ °¢ are unmarked at m.
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A (synchronized) step of transitions is a set of transitions which can be constructed
inductively in the following way: For each spontaneous transition ¢ the set {t} is a
step. If € is a step, ¢ is an O R-synchronized transition not in £ and £ contains at least
one synchronizing transition of ¢, then £ U {t} is a step. If £ is a step, ¢ is an AND-
synchronized transition not in £ and £ contains all synchronizing transition of ¢, then
€ U {t} is a step.

A step € is potentially enabled at a marking m if

— all places in *¢ and T¢ are marked at m,

— the places in £° \ (*£ U T¢) are unmarked at m, and

— all transitions 1, %o € £ are not in conflict w.r.t. to their pre- or postsets, i.e. *¢; N
*to =D and ty Nts = 0.

From all steps potentially enabled at a marking m only those are enabled which are
maximal with this property.

The occurrence of an enabled step £ removes a token from each place of the preset
of ¢ and adds a token to each place of the postset of £. A sequence of steps which are
enabled subsequently from the initial marking is called an occurrence sequence.

We add to a signal net an input/output structure. This structure consists of sets of
event signal inputs and outputs, condition signal inputs and outputs, and arcs connecting
these inputs and outputs with places and transitions of the signal net. The event signal
inputs and outputs are connected via event arcs with transitions of the signal net. The
condition signal inputs are connected with transitions of the signal net via condition arcs.
The condition signal outputs are connected with places of the signal net via condition
arcs. For the condition signal inputs, their initial states are fixed (either in on- or off-
state). A signal net together with such an input/output structure defines a module of a
signal net (see Figure 3).

We extend the notions of preset, postset and positive context to the added event and
condition signal inputs and outputs in the obvious way.

Two modules A and B can be composed by identifying event resp. condition inputs
of module A one by one with event resp. condition outputs of module B, and vice versa,
employing a composition mapping {2 (see Figure 4). The identification of inputs and
outputs via {2 is required to satisfy the following properties:

— A place of A connected to a transition of B via a condition signal output of A which
is identified with a condition signal input of B is initially marked if and only if the
condition signal input is in on-state, and vice versa.

— No cycles of event arcs are generated.

The connections of places and transitions of one module to places and transitions of the
other module via identified inputs and outputs are replaced by direct signal arcs (see
Figure 5). The composition of A and B w.r.t. {2 is denoted by A x¢, B.

We are interested in the behavior of a module of a signal net A w.r.t. a given envi-
ronment: Transitions connected by an event signal input to the environment are not able
to occur spontaneously but need to be synchronized by the event input in order to occur.
Similar, a transition connected by a condition signal input to the environment is only
able to occur if the condition signal input is in on-state. In the most general case, this
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Fig.3. A module of a signal net with condition inputs C*" = {ciﬁl}, event inputs £ =
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Fig. 4. The composition of two modules.
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Fig. 5. The result of the composition of the modules from Figure 4.

environment is assumed to be maximally permissive in the sense that there are no causal
dependencies between sending event signal inputs and switching on and off condition
signal inputs. We model such an environment as a module £ of a signal net and then
compose the environment module appropriately with the module A such that £ realizes
a maximally permissive environment in the following sense (see Figure 6):

— At any moment, £ can send event signal inputs to A: each event signal input of A
is synchronized by a corresponding so called input transition in £ that is always
enabled;

— at any moment, £ can send condition signal inputs to A: Each condition input of
M is switched on resp. off by marking resp. unmarking a corresponding so called
input place in &;

— & can observe signal outputs of A: Every event signal output of A synchronizes a
corresponding so called output transition in £ that is always enabled. Every condition
signal output enables resp. disables a corresponding output transition in £ that is
always enabled.

By this definition, in £ no synchronization between its transitions is allowed. In particular,
input signals can not be sent in steps from £ to A, and output signals of A can only be
observed by £ and not synchronize input signals of A via &.

The assumption that the environment (which later becomes the controller) changes
at most one of its inputs to the plant at each moment does not always hold in practice.
A controller might change more than one input to the plant within one cyclic run of its
control program. In such a case, an environment enabling steps of input signals has to be
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Fig. 6. The composition of the module in Figure 3 with its maximally permissive environment
module.

considered. It is straightforward to modify all synthesis algorithms presented in the next
part of this paper in order to deal with an environment allowing such steps of inputs.

The composition of A with its maximally permissive environment £ is called the
standalone of A. This composition has empty input/output structure. As an example, see
Figure 7. The standalone is a model representing the uncontrolled behavior of the plant.
The set L 4 of all occurrence sequences of the standalone of A is called the behavior of A.

Since the underlying Petri net is assumed to be 1-safe, the behavior L4 of A is a
regular language and can be represented as a finite automaton.

In [17] we introduced the input/output behavior of A as the set of all occurrence
sequences of the standalone of A in which the transitions of A are hidden. Further, we
defined two modules to be input/output equivalent if they have the same input/output
structure and identical input/output behavior. By defining an appropriate composition
operation for standalones, we showed that input/output equivalence is preserved by the
composition of modules. This is a crucial concept for hierarchical modelling which
allows to replace a module by a more abstract/concrete module with the same "in-
put/output” functionality. Moreover, using the composition operation for standalones, it
can easily be seen that the input/output behavior of the composition of two modules A
and B can be represented by the composition of the standalones of A and B.

Summarizing, modules of signal nets are an extension of Petri nets supporting in-
put/output structures, modularity and compositionality in an intuitive graphical way with
precise syntax and semantics. This fact gives a motivation for a more detailed theoretical
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Standalone of A

Fig. 7. The standalone of the module of a signal net in Figure 3.

investigation of this extension of Petri nets. In the following part of the paper we discuss
the role of both kinds of signals in control tasks and we focus on control aspects in
general.

Part 11

3 Controller Synthesis

As mentioned in the introduction, the aim in control synthesis of DES is to influence the
behavior of a system by a control via passive and active signals in order to get a specified
desired behavior. In principle, there are two possibilities to specify a desired behavior
(see [2] for an actual survey, and [1,28] for recent developments):

— The event-based approach used in the seminal work of Ramadge and Wonham on
supervisory control of DES [23]. In this framework, automata are used to model
the behavior of the plant and of the control. The desired behavior is given by legal
sequences of events.

— The state-based approach [13], where Petri nets are used to model plant and control.
The desired behavior is derived from a set of legal resp. forbidden states.

In both approaches, the main problem is that the considered modelling formalism
(languages, automata, Petri nets) does not provide a straightforward mechanism for
enforcing events in the plant.
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Fig. 8. Model of the plant.

In classical supervisory control, this problem is solved by modelling the enforcing
of an event in the plant via prohibiting all other possible events [6]. As a consequence,
the behavior of the plant cannot be forced by the control, now called supervisor, but only
be restricted. Formally, a regular prefix closed language over a set of events representing
the uncontrolled behavior of the plant and a regular subset of this language representing
the restricted desired behavior is given. In the most general case, one distinguishes be-
tween controllable events (which can be prohibited by the supervisor) and uncontrollable
events, and between observable events (which can be observed by the supervisor) and
unobservable events. The question is, which controllable events should be prohibited by
the supervisor after observing a certain sequence of observable events in order to disable
all undesired behavior in a minimal restrictive way.

We present an alternative to the existing approaches to control of DES, employing
direct enforcing of events in our models. The aim of control is to maximally force the
behavior of the plant in order to ensure the specified desired behavior. Our formalism
is suitable for both kinds of specifications of the desired behavior. In the literature, the
event-based approach is further developed than the state-based approach in the sense
that it allows more general specifications [30]. Therefore, we concentrate in this paper
on an event-based specification of the desired behavior.

As an illustrative running example, consider the model of a plant consisting of two
modules A and B given in Figure 8. The modules are independent. Each module models
a task. The behavior of a module is cyclic and consists of three events. The event ¢, (resp.
t4) occurs if it is synchronized by the event signal ¢ry,, (resp. tryp) and if the module is
ready to start (place p; (resp. ps) is marked). The event ¢, (resp. t5), which represents
that the task is finished, is spontaneous but can be observed through occurrence of the
event signal a (resp. b). Finally, the event t3 (resp. ts), which initializes the module to
be ready to start, is spontaneous and unobservable.

In the figures we draw the two modules separately but we understand them as one
module, obtained by a composition with an empty composition mapping. In other words,
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Fig. 9. Model of the plant together with its environment.

we consider the module obtained by putting the both modules side-by-side without
connections between their input/output signals. We call this module P.

The aim of the control specification is to coordinate the behavior of both modules in
order to ensure the following behavior: Both tasks alternate strictly, starting with the task
of module A and ending with the task of module B. More precisely, since only output
behavior is relevant, the aim is to observe desired sequences of event output signals.
The set of desired sequences is given by the regular language L. = (ab)*. In general,
the desired behavior is given by a regular language which involves event signal inputs.
Moreover, since the event arc relation produces a semantics of (synchronized) steps of
transitions, the desired behavior must be specified as a regular language over steps of
event signal inputs and outputs.

Let T = {t1,...,ts} be the set of transitions and P = {p;,... ,ps} be the set
of places of the plant. To denote a marking in figures, we use the vector-like notation,
which is more usual in control literature.

Consider the maximally permissive environment £ of P, shown in Figure 9, and
the standalone of P, shown in Figure 10, which is a composition of P and £ w.r.t. to a
composition mapping §2. We denote by I = {t;ry_q, tiryp} the set of input transitions
of £ corresponding to the event signal inputs try_a, try_-b and by O = {t,,t,} the set
of output transitions of £ corresponding to the event signal outputs a, b. The behavior
Lp of P is given as the set of all occurrence sequences of the standalone of P. It can be
represented by the finite automaton shown in Figure 11. In order to be able to compare
Lp with the specification (ab)*, we restate the specification in the form L. = (t,p)",
replacing event signal outputs by the corresponding output transitions in £.

A sublanguage K of Lp satisfies the specification if each occurrence sequence of
K is a prefix of an occurrence sequence of K whose projection onto the set O of output
transitions of £ is a string in L.. In particular, each projection of an occurrence sequence
of K onto O is required to be a prefix of a string in L.. The above condition implies
that K represents a nonblocking behavior where the tasks specified by L. always can
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Fig. 10. Standalone of the plant.
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Fig. 11. Behavior of the standalone of the plant.

be completed. If Lp already satisfies the specification, £ is the desired control module
C. Therefore, £ can be seen as a first approximation of C.

In our example, the projection of the occurrence sequence {t¢}{tiryp,ta}t{ts,ts}
onto O yields the string {5}, which is not a prefix of a word in L. = (¢,)*. In such
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cases, the aim is to add new net elements to £, thus defining causal dependencies between
input and output transitions of £ to prohibit such undesired occurrence sequences.

To summarize, the aim is to construct from £ a control module C which composed
with P by the same composition mapping {2 defining the composition of P and £
satisfies: Each occurrence sequence of the underlying signal net of C *, P respects the
desired behavior in the sense that this occurrence sequence can be completed to another
occurrence sequence of this underlying signal net whose projection onto (input and)
output transitions of C, which replace event signal (inputs and) outputs of P, is a string
of the desired behavior.

We synthesize C in two steps. First, we define conditions of controllability of a
regular sublanguage of Lp (analogously to [23]) and compute the maximally permissive
controllable nonblocking subbehavior Ly, re Of Lp satisfying L. as a finite automaton.
This is done by manipulating regular languages in subsection 3.1. Second, we synthesize
a signal net simulating the control structure given by this automaton and add this signal
net to £. By this signal net the input and output transitions of £ are coordinated in such
a way that L., re i realized.

3.1 The Behavior of the Controlled Plant

We formulate our approach similar as it is done in classical supervisory control. The
main technical differences to the classical supervisory control approach are due to the
mentioned step semantics. Nevertheless, some algorithms of classical supervisory con-
trol can at least be adapted to our framework. While omitting therefore most details of
these algorithms, our paper remains self contained, i.e., it can be understood without
previous knowledge of supervisory control.

As mentioned in the last section, our aim is to compute a regular sublanguage L4 fe
of Lp representing the maximally permissive controllable nonblocking subbehavior of
Lp satisfying the specification. Roughly speaking, controllable means that L4, e can
be realized by a control.

The computation of L. e 18 done in several steps by manipulating regular lan-
guages. For this we need a special projection operator Ay . Applying Ay to a language
over an alphabet of the form 2% means to project each word in this language onto 2X\Y .
In [18,19] we showed that projection operations of the form Ay and pumping operations
of the form )\;1 preserve the regularity of languages.

“Good" occurrence sequences. In a first step we delete all occurrence sequences w
from Lyp satisfying A\;u7(w) & L, i.e. whose projections onto output transitions are not
prefixes of L. (L. denotes the prefix closure of L.). We call such occurrence sequences
"bad" occurrence sequences and the remaining ones "good" occurrence sequences.

For example, w = {t3}{ttry_a,t1}{t2,%a} is a good occurrence sequence since
)\IuT(w) = {ta} € LC, and v = {tg}{ttry_a, tl}{tz, ti}{tS}{ttry_a, tl}{tz, ta} is a
bad occurrence sequence since A r(v) = {ta}{ta} & Le.

The set of all good occurrence sequences is denoted by L, fe. It can formally be
computed by

Lpsafe = )\j_UlT(L_C) N LP?
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Fig. 12. Automaton recognizing the language Lpsq fe.

and is therefore regular. For our running example, Figure 12 shows a representation of
Lpsare as a finite automaton.

Controllable occurrence sequences. In L,,, . there may exist good occurrence se-
quences which can be extended within Lp to bad occurrence sequences. For example,
the good occurrence sequence w = {ts}{try.5, ta} can be extended by the step {ts, 5 }
to the bad occurrence sequence v = w{ts, tp} = {te }{tiryp. ta}{ts,tp}. If this exten-
sion is not controllable, i.e. contains no controllable transition, it can not be avoided by
the control. In our example, once w is allowed, v can not be avoided: The step {5, ¢} is
not controllable, but can only be observed by the control. Therefore, we require Ly,psq fe
to satisfy the property
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(1) What cannot be prevented, should be legal

which we call the first condition of controllability. It corresponds to the classical notion
of controllability in supervisory control.

Good occurrence sequences which can be extended by uncontrollable steps to bad
occurrence sequences are called dangerous occurrence sequences. They must be cut off
at the last possibility of control, i.e. the last possible signal input (if there is one). In our
example, after the step {ts }, sending a signal input via occurrence of the transition ¢, 4
should be forbidden, so w is cut after {¢g }. By this, all dangerous occurrence sequences
ending with a step containing an input and their futures are deleted from L, fe.

Due to unobservable transitions, there may remain good occurrence sequences which
cannot be distinguished by the control from dangerous occurrence sequences deleted in
the last computation step. For example, the control can not decide whether the occurrence
sequence {ts} has occurred or not since g is an unobservable transition. Therefore,
forbidding the occurrence sequence {t¢ }{t¢y s, t4 } means to forbid also the occurrence
sequence {t4,p}. This follows the rule

(2) What cannot be distinguished, cannot call for different control actions,

called the second condition of controllability. It corresponds to the notion of observability
in supervisory control.

In our example, since the signal input {t;,, s} is forbidden after the occurrence of
{ts} according to the last computation step, it must also be forbidden from the initial
marking (after the empty occurrence sequence). The cutting off of appropriate inputs can
be represented by deleting corresponding edges in the automaton representing Ly, fe,
see Figure 13.

Deleting all dangerous occurrence sequences and all occurrence sequences which
are undistinguishable to a dangerous occurrence sequence L, re gives the language
Lsa fe-

L, ye again can be expressed by a closed formula over regular languages, and is
therefore regular. Moreover, it was proven to be the maximally permissive controllable
sublanguage of Lp in [19]. For our running example, Figure 14 shows a representation
of Lsqrc as a finite automaton.

In general, there can be an occurrence sequence w from Lp which contains no input
transition and whose projection onto O is not a prefix of a string in L.. In this case we
cannot control the plant in such a way that no undesired behavior will happen. Thus,
only if there is no such sequence, the maximally permissive controllable sublanguage
of Lp exists.

Blocking occurrence sequences. By construction, every projection of an occurrence
sequence in Ly, . onto O is a prefix of a string in L.. However, it might happen that
there are occurrence sequences that cannot be completed within L, s to an occurrence
sequence whose projection onto O is in L., i.e. the desired behavior is blocked. We call
such occurrence sequences blocking.

In our example, L, . does not contain blocking occurrence sequences and there-
fore is already the searched language L,,;5, ro. Therefore, we illustrate the existence of
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Fig. 13. Removing dangerous occurrence sequences and their future from the language Ly sq fe.

blocking occurrence sequences by another example of the standalone of a module of
a plant P’ given in Figure 15. The behavior Lp/ of P’ is given by the automaton in
Figure 16. The automaton in Figure 17, also representing Lp/, is more appropriate to
illustrate the procedure of deleting blocking occurrence sequences.

The control specification is given again by the regular expression (¢,tp)*. All pro-
jections of occurrence sequences of the standalone onto O = {t,, 1} are prefixes of
strings in L.. Thus, Ly, s, = Lp/. However, the occurrence sequence

{tat{tia, tatH{ts, tr, ta Htis. ta} {te. ts, ts } {t5. to, ta}

is blocking.
Since every future of a blocking occurrence sequence is also blocking, we can delete
blocking occurrence sequences by cutting them off at the last possible input (if there
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Fig. 14. Automaton recognizing the language L, fe.

is one). The prefixes ending with these inputs are called real bad choices. In the above
example, the last possible input is {¢; 3, t3} and

{tap{tia, tiH{ts. t7. ta H{tis, ts}

is the corresponding real bad choice (see Figure 17).

Due to the second condition of controllability, such an input must be forbidden for all
occurrence sequences which are undistinguishable to a real bad choice. Such occurrence
sequences are called bad choices. In our example,

{tia1, t1 H{ts, ta H{tis, ts}

is a bad choice undistinguishable to the previous real bad choice (see Figure 17).
Deleting all bad choices and their futures from L, s possibly produces new blocking
occurrence sequences. For example, after deleting the real bad choice

{tad{tia, ti H{ts, tr, ta H{tis, ta}
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Fig. 15. Standalone of a module.

and its future produces the new blocking occurrence sequence

{ta}{tin, t1H{ts, tr, ta }

Therefore we have to iterate this procedure (see Figure 17).

To state the algorithm, we denote for any sublanguage K of Ls,fe by Kpiocking
the set of all blocking words of K and by Kpqdchoice the corresponding bad choices
in K. We showed in [19] that if K is regular then also Kyjocking and Kygdenoice are
regular, since they can then be expressed by a closed formula over regular languages.
The following algorithm deletes subsequently all blocking words from L f.:

Input: Language K° — Lgqye, Integer ¢ = 0.

Step 1:
Compute K7, ping-
Step 2:

If K}

blocking CONtains at least one word without any input return "Ly sq e does not
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Fig. 16. Automaton representing the behavior of the standalone from Figure 15.

{tioh{ti st {tah{tiohitis} {tiah{tio} {t bt oh{t st {ti +}{t o {t s} {ti_+}.{ti o} {ti s}
S

N

{ti_1! t1} {t51 t7! ta} {ti_s, t3} {t61 t8! tb} {t5! t9: ta}

0
K badchoice Koblocking

Kobadchoice {ts, ta}

tig td L\ {to, ty)
XK

’ {ti 1h{t oh{ti s}

{toabitioh{ti sb  {toah{tioh (b {tioh{ti sk {ti (b {t b {ti s}

Fig. 17. Automaton representing the behavior of the standalone from Figure 15 which splits the
bad choices from other words.

exist” (because there is no possibility to avoid this word by control).
If K}, cping is empty return K.

Step 3:

ComPUte Kléadchoice :

Set K**! by removing all words of K7
Seti =1+ 1.

Goto Step 1.

and their future from K.

adchoice

Starting with K° = L, re the algorithm iteratively deletes blocking occurrence
sequences by cutting them off at the last possible inputs and by additionally deleting
all undistinguishable occurrence sequences. This is done until either no new blocking
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’ {ti h{ti oh{ti o}

{ti b {ti bt o {t 4h{t o} {ti 13 {ti oh{ti s}

Fig. 18. Automaton obtained by deleting edges representing bad choices from automaton in Fig-
ure 17.

occurrence sequences are produced or there is a blocking occurrence sequence without
any input in the actually computed language (in which case no controllable language
without blocking occurrence sequences exists).

The algorithm returns alanguage if and only if the maximally permissive nonblocking
controllable sublanguage exists, which we call L,,;54f¢. A proof can be found in [19].

We briefly show that the algorithm always terminates. The main idea is to find a de-
terministic finite automaton G recognizing L, r such that deleting words of K}, j.1,0ive
and their future corresponds to deleting edges in GG. A necessary and sufficient condi-

tion for this is that the states of G distinguish words in K}, ;e from words not in

K gadchoice :
In general, not each finite automaton A recognizing L, s satisfies this property. For
example, the previously mentioned occurrence sequence

{tia, tiH{ts, ta }{tiz, t3}

is a bad choice. However, in the automaton representing L, . from Figure 16 the
occurrence sequence

{ti i {ts, ta s to }{ts, ta }

which is no bad choice in KV, leads to the same state. In this case, deleting the corre-
sponding edge would cut also nonblocking behavior off, i.e. it would cut too much.

In [19] we showed that such an automaton GG always exists by an effective construc-
tion.

Figure 17 shows an automaton recognizing the same behavior as the automaton in
Figure 16 which distinguishes between bad choices. In the automaton of Figure 17 the
bad choice (of the language K*)

{ti1, t1 H{ts, ta H{tis, ts}
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{ti oh{ti s}

{ty}
{ti 1h{ti o}{t s}

’ {ti h{ti o}{t 3}

Fig. 19. Automaton obtained by deleting edges representing bad choices from automaton in Fig-
ure 18.

{ti 2 t}

{te, tu}

is now recognized by a different state as the occurrence sequence

{ti1, ti H{ts, taH{te, to H{ts5, ta}-

The application of the algorithm to the automaton in Figure 17 is illustrated in Figures 18
and 19. In the resulting automaton in Figure 19 the transition ¢4, which can occur
spontaneously, leads to a deadlock in the module. However, this is an "allowed" deadlock
because the control specification "if @ happens then b must happen too" is still satisfied.

3.2 Synthesis of Control Modules

In this subsection we show how to synthesize a control module C from the controllable
subbehavior L4, te (see Figure 14) of Lp (see Figure 11) by adding new net elements
to the environment module £ (see Figure 9). The composition of the resulting control
module C with the plant module P has exactly the behavior Ly, fe, in the following
sense: The projection of the behavior of this composed module onto the set / UO U T
equals Lypsafe.

To synthesize C, we consider the observable part of Ljpsqre, 1.€. its projection
A7 (Lnpsare) onto input and output transitions. Figure 21 shows a possible automa-
ton A recognizing Ay (Lypsafe). This automaton can be computed in two steps: First
take the automaton recognizing Ly,psq e from Figure 14 and hide all transitions of 7.
The result is the nondeterministic e-automaton shown in Figure 20 (e is the empty word).
This automaton can be transformed by a standard procedure into an equivalent deter-
ministic automaton. The main idea for the construction of C is to simulate the control
flow given by A by a signal net and to add this signal net to €.

For an automaton with states drawn as filled circles and with labelled directed edges
between states drawn as arrows with annotation, an edge leading from state s to state s’
with label z is denoted by s = s'.

In our example, it is quite straightforward to compute a signal net which simulates
A: Every state s becomes a place p,, and every edge s — s’ becomes a transition boa -
In case s # s, t_= , has the preset {p,} and the postset {py }. In case s = ', ¢_=

s—s’
tests ps to be marked by a condition arc. Initially the place corresponding to the initial
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A(Lg.se): NOndeterministic e-automaton
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Fig. 20. The nondeterministic e-automaton recognizing A7 (L s f. ) computed from the automaton
recognizing Lq re from Figure 14.

state is marked. The procedure is illustrated in Figure 22. For convenience, we use a
slightly simpler notation for the transitions. In case © = {t,, o} We write t;, o for
UEYS This illustrates the intended meaning of ¢;,_s,,_ to send the input signal ¢ry_a to
the plant. In case x = {t,} we write ¢ fyop,_q for S This shows the intended meaning
of t trom_q to Observe the output signal a sent from the plant. The labels z = {t/y 1}
and z = {t;} are treated analogously. Each state s of the automaton corresponds to the
marking in the signal net where exactly pg is marked.

When the resulting signal net is connected with the input and output transitions
of C inherited from &, the control module shown in Figure 23 is obtained. Using the
connections between the plant and its environment £, we get the controlled composed
module shown in Figure 24. The control module formalizes the intuition of how to send
inputs in order to observe prefixes of the desired output behavior (t,t,)*: First the input
try_a is sent at least once. It is sent as long as one observes the output a. After that it is
no longer possible to send ¢ry_a. Then try_b is sent at least once. This input is sent as
long as one observes the output b. Finally the behavior starts from the beginning.

In general, the automaton A is more complicated because the arc labels are steps
consisting of more than one transition. Therefore, the construction of C is more sophis-
ticated. In [19] the construction of C for general automata A is presented. This paper
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AM(Lg.ee): deterministic automata

+ {ttry_a} {ttry_b}
% {ty o} ‘e {t.} e {tiy o}

{to}

{ttry_b}

Fig. 21. The deterministic automaton recognizing At (Lsq se ) computed from the nondeterministic
e-automaton from Figure 20. It is drawn in two different forms: The left Figure corresponds to
the shape of the automaton recognizing L s, re from Figure 12. The right Figure is convenient to
deduce the signal net representing the control flow.

Associated signal net

+ {tlry_a} {ttry_b}
{tyy o} X {t,} @ {tiy o} \
{t,}
tto_try_a tto_try_b
tfrom_a p3
‘ : >—> —>< >—> Py
T tto_try_a p7 tfrom b tto_try_b

A

Fig. 22. The signal net simulating the control flow given by the automaton shown above.

contains a proof that the projection of the behavior of the composition of P and C onto
the set I U O U T equals Lypsqfe. Since the general construction is very involved, we
only give some examples for possible problems and their solutions.

Basically, each state s of A can be modelled as a place p,, and each labelled edge
s 5 s’ of A asan AND-synchronized transition t = Inthecase z C O, the transition
t =, is intended to observe the step of outputs x. It is therefore synchronized by all
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Control module
try_a try_b
’4—% ttry_a ttry_b ¢_>’
tto_try_a ttco_try_l.v
Yirom a Ps
Pg
tto::_try_a P7 ’ t from_b tto_!ry_b
= i
| t t |
f g b f
a b

Fig. 23. The resulting control module given by the signal net from Figure 22 connected with the
input and output transition from the environment.

Plant: part A Control module Plant: part B
try_a try_b

Fig. 24. The control module connected with the two plant modules. The composed module satisfies
the specification in a minimal restrictive way.

output transitions in the set {t, € O | a € z}. If = contains signal inputs, the situation
is more complicated. Each state is represented by a marking which consists in general
of more than one place.

Avoiding undesired conflicts caused by shared pre-places. Consider the automaton
A shown in the left part and the signal net simulating A in the middle part of Figure 25
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Fig. 25. Part (a): Avoiding undesired conflicts caused by shared preplaces and checking exact
markings. Part (b): Avoiding undesired conflicts caused by shared postplaces.

(a). Since the transitions ¢ ,,; and? (1 .0y ) share a pre-place, the occurrence of the
S —' S S — S
step of output signals {01, 02} either synchronizes ¢ ,, . OF T (p1,02) . That means,
S — S S — S

in the marking corresponding to state s two steps are in conflict. Moreover, one of the
steps (when t . is synchronized) does not correspond to the control flow.
s — S8

The right part of Figure 25 (a) shows a signal net simulating A, where the mentioned
conflict is avoided. To this end, a transition t<"***¥ removing the token from the place
ps 1s introduced. It is synchronized by both transitions ts{o—1>}sl and ts{°1—’§’2}52' Both
transitions have empty preset and test the place ps to be marked via condition arcs.
The occurrence of the step of output signals {01, 02} now synchronizes both transitions

t and ¢ .
s{o—1>}sl 8{01;;)2}32

Checking exact markings. In the last example, the occurrence of the step of output
signals {o1, 02} produces the follower marking {ps1, ps2 }. Therefore, the marking cor-
responding to the state s2 is {ps1, psa2 }. The occurrence of the step of output signals {o1}
produces the follower marking {ps1 }, which therefore is the marking corresponding to
the state s1.

Since the transition tq1{ o3}, should only be enabled under the marking {ps; }, but

not under the marking {pﬂ, Ps2}, t ) has to test the place ps2 not to be marked.
S

03
{—>}s’



296

(a) false correct

plant - plant -

(b)

Fig. 26. Part (a): Avoiding cycles of event arcs caused by signal inputs. Part (b): Distinguishing
states by markings.

This can be achieved by introducing a complementary place to pso and to test this place
to be marked.

Avoiding undesired conflicts caused by shared post-places. Consider the automaton
A shown in the left part and the signal net simulating A in the middle part of Figure 25
(b). The occurrence of the step of output signals {02, 03} in the marking corresponding
to state s’ synchronizes both transitions ¢ ;s . and t (.00 . Therefore, the marking
s’ —="s s’ = s
{ps1,Pps2} corresponds to the state s2. Since the occurrence of the transition ¢ (5 s )
S — S
must lead to the same marking {ps1, ps2 }, the transitions ¢ |, .3, ) and t (,1 .2 ) share
S — S S — S
a post-place. Therefore, the occurrence of the step of output signals {ol, 02,03} in
the marking corresponding to state s either synchronizes ¢ (., .3} ) O & (p1,02) z That
S — S S — S
means, in the marking corresponding to state s two steps are in conflict.
The right part of Figure 25 (b) shows a signal net simulating A where the mentioned

conflict is avoided. For this, transitions tﬁ” resp. tﬁ”, which mark the places py; resp.

Pps2, are introduced in a similar way as the transitions ¢t”*P*¥ which unmarks places.

Avoiding cycles of event arcs caused by signal inputs. Consider the automaton A
shown in the left part and the signal net simulating A in the middle part of Figure 26
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(a). By the occurrence of transition ¢ ¢, ., ) input % is sent to the plant. This produces a
s — S

cycle of event arcs, since 7 possibly synchronizes the step of outputs {0}, which again
synchronizes ts{i;(;}sj

The right part of Figure 26 (a) shows a signal net simulating A, where such cycles
are avoided. For this inputs are modelled by additional transitions as shown.

Distinguishing states by markings. Consider the automaton A given in the left part of

Figure 26 (b). On the one hand, the occurrence of the step of output signals {01, 02} in the

marking {p; } synchronizes the transitions ¢ |, ,»; . andt ., . Therefore, the follower
S — S s —' s

marking is {ps1, ps2 }. On the other hand, the occurrence of the step of output signals
{01, 02} in the marking {p, } synchronizes the transitions ¢ (.1 ) . andt ;,, and
s’ = s

the follower marking is also {ps1, ps2 }. Therefore it corresponds to both states s1 and
s2. That means that the control does not distinguish between observable different states
of the plant.

This situation can be avoided if we modify the automaton A such that the states of
A distinguish words according to their last character. More formally, we require x = y

for all edges of the form s’ — s and s” - s. As long as this is not the case for a state
sof A,i.e. x # y, one can split s into two copies, one for words ending with = and one
for words ending with .

3.3 Alternative Techniques for Synthesis

An approach that uses complete enumeration of the whole controlled behavior will ob-
viously reach its limitation if the systems are large. It therefore makes sense to consider
methods that use structural properties of the model instead. At the current state of re-
search, a general approach for models without structural restrictions is unlikely. If one
restricts, however, to models with simple structures, formal techniques for synthesis are
possible. This holds in particular for pure Petri net models of the plant.

Methods for controller or supervisor synthesis for Petri nets are well developed.
This holds especially for specification in terms of forbidden states. A comprehensive
review can he found in [13]. Synthesis methods for sequential specifications, however,
are yet rather sparse. One significant contribution in this area is the work of Giua [7],
who studied an alternative design to Ramadge and Wonhams monolithic supervisor.
His method entails the Petri net modelling of subsystems and specifications, which
are then combined through a "concurrent composition" operation. Then, a "refinement"”
step of the combined model ensures the non-blocking and controllable properties. In
this case, the existence of the Petri net supervisor is guaranteed whenever the given
Petri net subsystems are conservative, although additional structure may be needed in
the refinement step. The main distinction to [7] in the method described in [21] is the
connection of the plant and specification models, which is done through the condition and
event signals of Signal nets. This is also the case when we consider systems where plant
and controller interact with each other in a closed loop. So, the model of the admissible
behavior will not be a classical Petri net but a Signal Petri net. The framework [21] can
also be applied as long as the Petri net model of the plant is safe.



298

The scope of [21] is limited to solving the problem of preventing an uncontrollable
event at a specific “controller state.” The method starts with a safe Petri net model of
the system and a sequential specification that is modelled with a special state machine.
A more general modelling framework for sequential specifications is currently under
investigation, where a temporal logic formula can be mapped to a signal net model.
An initial discussion is given in [20]. The main contribution in [21] can be described as
follows: The condition and event signals of Signal nets are used to combine the plant and
specification models. Then, the structure of this combined model allows to determine
which controllable events need to be restricted by the controller, and at what states they
need to be restricted in order to obtain the legal or admissible behavior of the system.
Thus, a complete description of the state space is avoided, and control of the system is
performed in a minimally restrictive way.

Another issue that is currently under investigation is how to extend the method to
reach some "target events" in the plant model. First results are presented in [22]. The
major drawback, however, is that in general the set of all reachable markings are required
to determine all feasible processes that lead to this target events. This means that even if
a process exists that drives the plant model towards the target event, the process might
be not feasible since it requires a marking that is not reachable from the initial marking.

4 Conclusion

In this paper we have illustrated methodologies for synthesis of control for DES with
input and output structure. For input/output communication, we employ active signals
which try to force events and passive signals which prohibit resp. enable event occur-
rences. As a modelling formalism, we use modules of signal nets. Signal nets offer
a direct way to model typical actuators behavior. Another advantage of such modules
consists in supporting input/output structuring, modularity, and compositionality in an
intuitive graphical way.

Given a control specification in form of a regular language over output signals of
the system, we showed how to automatically synthesize the control module. This forces
the system to maximally permissive behavior preserving the control specification, in the
sense that only sequences of outputs which respect the specification will be observed.

In the paper we did not focus on complexity issues. It is known that the complexity
of the supervisory control problem is PSPACE-hard in general, and sometimes even
undecidable ([28], pp. 15 - 36). For efficient algorithms, the setting must be restricted in
some way, for example by considering only very special classes of control specifications.

We restricted our approach in several aspects: As a control specification, only se-
quences of signal outputs were considered. Moreover, the synthesized controller changes
at most one of its inputs to the plant at each moment. An extension of our methodology to
control specifications including signal inputs and to controllers sending steps consisting
of more than one signal input to the plant is a straightforward exercise.

The presented approach considers only Petri nets on an elementary level. For complex
industrial-size systems, these nets tend to be either very large or too abstract. In particular,
data and time aspects cannot be modelled in a natural way. Therefore, we are working
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on an extension of the control methodology for modules of signal nets with special
high-level Petri net features.
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