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Abstract. Off-centers were recently introduced as an alternative type
of Steiner points to circum-centers for computing size-optimal quality
guaranteed Delaunay triangulations. In this paper, we study the depth
of the off-center insertion hierarchy. We prove that Delaunay refinement
with off-centers takes only O(log(L/h)) parallel iterations, where L is
the diameter of the domain, and h is the smallest edge in the initial
triangulation. This is an improvement over the previously best known
algorithm that runs in O(log2(L/h)) iterations.
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1 Introduction

Mesh generation problems ask for the discretization of an input domain into
small and simple elements. These discretizations are essential in many applica-
tions including physical simulations, geographic information systems, computer
graphics, and scientific visualization [9]. In addition to having the mesh conform-
ing the input domain, most applications require that the mesh elements are of
good quality and that the size of the mesh is small. A mesh element is considered
good if its smallest angle is bounded from below. A bad element is likely to cause
interpolation errors in the applications. Hence, mesh quality is critical for the
accuracy and the convergence speed of the simulations. Mesh size, naturally, is
also a factor in the running time of the applications algorithms.

Two main approaches for solving the mesh generation problem are the quad-
tree methods [2, 10] and the Delaunay refinement methods [5, 13]. Both methods
compute quality-guaranteed size-optimal triangular meshes. However, Delaunay
refinement methods are more popular than the quadtree methods mostly due
to their superior performance in practice in generating smaller meshes. Over
the years, many versions of the Delaunay refinement have been suggested in the
literature [5, 7, 11, 13, 14, 16].

Delaunay triangulation of a given input is likely to have bad elements. De-
launay refinement iteratively adds new points, called Steiner points, into the
domain to improve the quality of the mesh. A sequential Delaunay refinement
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Fig. 1. Circumcenter vs. off-center insertion on an airfoil model. The smallest angle in
both meshes is 32◦. Delaunay refinement with circumcenters inserts 731 Steiner points
and results in a mesh with 1430 triangles (a). On the other hand, Delaunay refinement
with off-centers inserts 441 points and generates a mesh with 854 triangles (b).

algorithm typically adds one new vertex in each iteration. Each new vertex is
chosen from a set of candidates – the circumcenters of bad triangles (to improve
mesh quality) and the mid-points of input segments (to conform to the domain
boundary). Ruppert [13] was the first to show that proper application of De-
launay refinement produces well-shaped meshes in two dimensions whose size is
within a small constant factor of the best possible. Recently, we introduced a new
type of Steiner points, called off-centers and proposed a new Delaunay refine-
ment algorithm [16]. We proved that this new Delaunay refinement algorithm has
the same theoretical guarantees as the Ruppert’s refinement, and hence, gener-
ates quality-guaranteed size-optimal meshes. Moreover, experimental study indi-
cates that our Delaunay refinement algorithm with off-centers inserts 40% fewer
Steiner points than the circumcenter insertion algorithms and results in meshes
30% smaller in the number of elements. This implies substantial reduction not
only in mesh generation time, but also in the running time of the application
algorithms. Fig. 1 illustrates the performance difference between off-center and
circumcenter insertion in meshing a region around an airplane wing. See [16] for
further analysis.

Parallelization of Delaunay refinement methods is important for large scale
applications. Recently, we gave the first parallel complexity analysis of the De-
launay refinement with circumcenters [15]. A main ingredient of this parallel
algorithm is a notion of independence among candidate Steiner points for in-
sertion at each iteration. The parallel algorithm consists of two main steps at
each iteration. First, we generate an independent set of points for parallel inser-
tion and then update the Delaunay triangulation in parallel. The independent
sets have some nice properties. Insertion can be realized sequentially by Rup-
pert’s Delaunay refinement method. Hence, an algorithm that inserts all the
independent points in parallel will inherit the size and quality guarantees of
Ruppert’s method. The independent sets can be generated efficiently in parallel.
In addition, they are “large enough” so that the number of parallel iterations
needed is shown to be O(log2(L/h)), where L is the diameter of the domain and
h is the smallest edge in the input triangulation [15]. In this paper, we show
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that by replacing the circumcenters with the off-centers, we improve the bound
on the number of iterations of the parallel Delaunay refinement algorithm to
O(log(L/h)). As a result, the work of our parallel Delaunay refinement algo-
rithm is improved to O(m log m log(L/h)), where m is the output size. This is
close to O((n log(L/h) + m) log m) time bound of Miller’s sequential algorithm
[11], where n is the input size.

2 Delaunay Refinement with Off-Centers

In two dimensions, the input domain Ω is represented as a planar straight line
graph (PSLG) – a proper planar drawing in which each edge is mapped to a
straight line segment between its two endpoints [13]. Due to space limitation we
present our parallelization results only on periodic point sets, a special type of
PSLG. If P is a finite set of points in the half open unit square [0, 1)2 and Z

2

is the two dimensional integer grid, then S = P + Z
2 is a periodic point set [6].

The periodic set S contains all points p + v, where p ∈ P and v is an integer
vector. As P is contained in the unit square, the diameter of P is L ≤ √

2. It
is worth to note that some of the pioneering theoretical mesh generation work,
such as sliver removal algorithms, are first studied on periodic point sets [4].

Let P be a point set in R
d. A simplex τ formed by a subset of P points

is a Delaunay simplex if there exists a circumsphere of τ whose interior does
not contain any points in P . This empty sphere property is often referred to
as the Delaunay property. The Delaunay triangulation of P , denoted Del(P ),
is a collection of all Delaunay simplices. If the points are in general position,
that is, if no d + 2 points in P are co-spherical, then Del(P ) is a simplicial
complex. The Delaunay triangulation of a periodic point set is also periodic.
The Delaunay triangulation of a point set can be constructed in O(n log n) time
in two dimensions [6].

Radius-edge ratio of a triangle is the ratio of its circumradius to the length
of its shortest side. A triangle is considered bad if its radius-edge ratio is larger
than a pre-specified constant β ≥ √

2. This quality measure is equivalent to
other well-known quality measures, such as smallest angle and aspect ratio, in
two dimensions [13].

The line that goes through the midpoint of an edge of a triangle and its
circumcenter is called the bisector of the edge. Given a bad triangle pqr, suppose
that its shortest edge is pq. Let c denote the circumcenter of pqr. We define the
off-center to be the circumcenter of pqr if the radius-edge-ratio of pqc is smaller
than or equal to β. Otherwise, the off-center is the point on the bisector, which
makes the radius-edge ratio of the triangle based on p, q and the off-center itself
β (Figure 2). The circle that is centered at the off-center and goes through the
endpoints of the shortest edge is called the off-circle. In the first case, off-circle
is same as the circumcircle of the triangle.

The description of the Delaunay refinement algorithm with off-centers is very
simple for the periodic point set input. We maintain the Delaunay triangulation
of the point set. As long as there exists a bad triangle in the triangulation, we
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Fig. 2. The off-center and the circumcenter of triangle pqr is labeled c and c1 respec-
tively. The circumcenter of pqc is labeled as c2. The off-circle of pqr is shown dashed.

insert its off-center as a Steiner point and update the Delaunay triangulation.
We refer to [16] for a detailed description of the algorithm for PSLGs and also
for the termination and size-optimality proofs.

3 Parallel Delaunay Refinement with Off-Centers

When parallelizing a Delaunay refinement algorithm, at each parallel iteration
we would like to insert as many Steiner points as possible. However, some off-
centers can be arbitrarily close to each other, hence neither a sequential nor a
parallel refinement algorithm insert them all and can still provide termination
guarantee. Furthermore, we would like to insert a set of points that has a sequen-
tial realization, i.e. there exist a provably good sequential algorithm that inserts
the same set of points. We select the set of insertion points in a parallel iteration
based on the following definition of independence among candidate off-centers.

Definition 1. Two off-centers ċa and ċb (and also the corresponding off-circles
ca and cb) are said to conflict if both ca and cb contain each other’s off-center.
Otherwise, ċa and ċb (respectively ca and cb) are said to be independent.

Our parallelization of the off-center insertion is based on the same edge classi-
fication that we used in parallelizing the Ruppert’s refinement [15]. Let h be the
shortest edge length in the initial Delaunay triangulation. The class E i contains
the edges whose length are in the half open interval

[√
2

i−1
h,

√
2

i
h
)
. Therefore,

there are at most �log√2(L/h)� edge classes. A triangle is said to be associated
with edge class E i if its shortest edge is in E i. The ith iteration of the outer loop
in the following algorithm removes all the bad triangles associated with E i.
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Algorithm 1 Parallel Delaunay Refinement with Off-centers.

Input: A periodic point set P in R
2

Let T be the Delaunay triangulation of P
for i=1 to �log√

2(L/h)� do

Let Ċ = {ċ1, . . . , ċn} be the set of off-centers of bad triangles associated with Ei

while Ċ is not empty do
Let I be a maximal independent subset of Ċ
Update Delaunay triangulation inserting all points in I in parallel
Update Ċ

end while
end for

Lemma 1. Suppose all the triangles associated with edge classes Ej, ∀j < i are
good. Then, off-circle of every bad triangle associated with class E i is empty of
other points.

Proof. Suppose the off-circle is not empty. Then, there exists a vertex inside
off-circle but outside the circumcircle (Delaunay property). Consider a morph
of the circumcircle into off-circle, where the morphing circle passes through the
endpoints of the shortest edge pq and hence its center moves from the circum-
center to the off-center along the bisector. Let w be the vertex that the morphing
circle hits first. The triangle pqw is bad because its circumradius is larger than
the radius of the off-circle. Moreover, its shortest edge is less than |pq|/√2. This
implies that pqw is associated with an edge class Ej where j < i. This contradicts
the assumption.

Lemma 2. Suppose ca and cb are two conflicting off-circles of two triangles
associated with class E i at a parallel iteration, and let ra and rb be their radii.
Then, rb/2 < ra < 2rb.

Proof. Off-circle ca contains ċb and (by Lemma 1) no vertices of the triangula-
tion. As some vertex on ca lies outside cb, the diameter of ca is greater than the
radius of cb. Thus, ra > rb/2. A symmetric argument implies 2rb > ra.

We next show that the mesh generated by Algorithm 1 is realizable by the
sequential algorithm introduced in [16] and described in Section 2.

Theorem 1. Suppose M is a mesh produced by an execution of the Parallel
Delaunay Refinement with Off-centers. Then, M can be obtained by
some execution of the sequential Delaunay Refinement with Off-centers.

Proof. Let I1, I2, . . . , Ik be the sets of vertices inserted by the Parallel De-
launay Refinement with Off-center at iterations 1, . . . , k, respectively.
We describe a sequential execution that inserts all the points in Ii before any
point of Ij for i < j. In other words, first all the points in set I1 are inserted
sequentially, then all the points in set I2, and so on. To determine the order
within each maximal independent set, we use a dependency graph. For any two
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off-centers ȧ, ḃ ∈ Ii, ȧ has to wait for the insertion of ḃ if ȧ is inside the cor-
responding off-circle b of ḃ. In the dependency graph we put an edge from ȧ to
ḃ. Because each edge is directed from a smaller circle to a larger circle, this de-
pendency graph is acyclic. Topological sorting of the vertices of the dependency
graph gives us a valid sequential insertion within each Ii. Notice that in a se-
quential realization an off-center ȧ ∈ Ii remains a candidate until it is inserted.
This is because the shortest edge of the corresponding triangle remains to be
the shortest edge of a bad triangle (not necessarily the same one).

Furthermore, in any sequential execution, a point p ∈ Ii cannot eliminate
a point q ∈ Ij for any i < j. Otherwise, q would not be inserted in the jth
iteration of the parallel execution. Finally, the parallel and sequential executions
terminate after inserting exactly the same set of points. An extra element in the
insertion set of one would indicate that the execution of the other one is not
terminated, as this implies existence of a bad element. Since the same points are
inserted effectively in the same order, the output mesh is the same.

We recall that β is the threshold of the ratio of the radius to shortest edge-
length defining a bad triangle. Thus, for β ≥ √

2, inserting the off-center of a
bad triangle whose shortest edge length is l, introduces new Delaunay edges of
length at least

√
2l.

Lemma 3. Suppose the shortest edge associated with any bad triangle is in E i.
Let e ∈ E i be the shortest edge of a bad triangle that exists before the first iteration
of the inner loop. Then, after O(1) iterations, either e does not exist anymore
or all the triangles associated with e are good.

Proof. Suppose e exists and still is the shortest edge of a bad triangle pqr after
iteration 51 of the inner loop. This implies that the off-center ċ of pqr is not
inserted because it was in conflict with another vertex at each of the iterations
1 through 51 of the inner loop during the ith iteration of the outer loop. So,
for each iteration k = 1, . . . , 51, an off-center ċ′k in conflict with ċ is inserted.
Moreover, by Lemma 2 the radius r′k of the corresponding off-circle c′k is at least
half the size of c, i.e. r′k > r/2, where r is the radius of the off-circle associated
with e. Let Ċ′ = {ċ′1, ċ′2, . . . , ċ′51} be the set of off-centers that were inserted in
iterations k = 1, . . . , 51. Let C′ be the corresponding set of off-circles. The radius
of each one of these circles in C′ is at least r/2. By Lemma 1, each circle c′k ∈ C′

is empty of all the centers in C′ inserted prior to ċ′k. So the centers in Ċ′ are
pairwise at least r/2 apart from each other. This in turn implies that the circles
of radius r/4 on the centers in Ċ′ do not overlap. These circles can spread into
an area of size at most 2π(r+r/4)2 because each of the corresponding off-centers
is in conflict with an off-center on either side of the edge e. One can fit at most

⌊
2π(r + r/4)2

π(r/4)2

⌋
= 50

circles of radius r/4 in that region. Therefore, the number of centers in Ċ′ is at
most 50, which is a contradiction.
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Our algorithm, one at a time, handles the bad triangles associated with each
edge class. In the next Lemma we justify the double loop structure of our parallel
refinement algorithm. We prove that during and after the ith iteration of the
outer loop no bad triangle associated with an edge in E i is introduced.

Lemma 4. Suppose the shortest edge associated with any triangle is in E i. Dur-
ing and after iteration i of the outer loop of Algorithm 1, the following are true:

I if an edge e ∈ E i disappears it never appears again;
II no new edges are introduced to edge class Ej, ∀j ≤ i;

III the radius-edge ratio of a triangle associated with E i does not increase.

Proof. (I) If there is no empty circle containing e before a Steiner point insertion,
clearly there is no such circle after the insertion. (II) During and after the ith
iteration of the outer loop the smallest edge that can be introduced has length
at least

√
2

i
h. (III) Consider an edge pq ∈ E i and a triangle pqr associated

with pq. We claim that the quality of a triangle pqu replacing pqr is better
than that of pqr. The new vertex u must be inside the circumcircle of pqr.
Otherwise, pqr is intact. On the other hand, u can not be too close to edge pq, i.e.,
min{|pu|, |qu|} ≥ |pq|. Otherwise, a shorter edge than pq would be introduced
contradicting (II). The radius of the circumcircle of pqu is smaller than that of
pqr when u is inside the circumcircle of pqr but outside the diametral circle of
pq. This in turn, implies that the radius-edge ratio of a triangle associated to an
edge in E i can only be improved through refinement.

Theorem 2. Parallel Delaunay Refinement with Off-centers algo-
rithm takes O(log(L/h)) iterations to generate a size-optimal well-shaped uni-
form mesh, where L is the diameter of the input and h is the length of the
shortest edge in the initial triangulation.

Proof. By Lemma 3 and 4, the ith outer loop of the algorithm takes O(1) parallel
iterations to fix all the triangles associated with E i. Overall the algorithm takes at
most 51 log√2(L/h) parallel iterations. The size optimality and quality guarantee
of the parallel algorithm follows from Theorem 1.

4 Discussions

We should note that in our design and analysis of the parallel Delaunay refine-
ment, we focused and gave a bound on the number of parallel iterations. To
complete the parallel time complexity analysis at each iteration we employ the
parallel maximal independent set algorithm presented in [15] and one of the
parallel Delaunay triangulation algorithms given in [1, 12]. As a future research
we plan to extend the off-center algorithm to three dimensions and explore its
benefits both in theoretical and practical fronts.
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