
Local Route Recovery Algorithms
for Improving Multihop TCP Performance

in Ad Hoc Wireless Networks

Zhi Li and Yu-Kwong Kwok�

Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong

ykwok@hku.hk

Abstract. TCP (transmission control protocol) will for sure continue to
be the major transport protocol in wireless environments, due to its large
install-base in existing applications. Indeed, in future ad hoc wireless
networks where devices communicate among each other over multihop
routes, TCP is expected to be the prominent protocol for data exchange
(e.g., multihop wireless FTP). However, there is a severe performance
degradation in using TCP over a wireless link. Despite that there are a
large number of wireless TCP adaptation schemes proposed in the lit-
erature, improving TCP performance over a multihop wireless route is
still very much unexplored. In this paper, we propose local route recov-
ery approaches for improving the performance of multihop wireless TCP.
Our simulation results generated by NS-2 indicate that the local recov-
ery approaches outperform complete replacement approaches (i.e., using
full-blown ad hoc routing protocols such as AODV and DSR) in terms of
end-to-end delay, throughput, packet delivery rate, and control overhead.

Keywords: wireless TCP, multihop communications, ad hoc networks,
routing, local recovery.

1 Introduction

In the past few years, we have witnessed that the Internet has extended its reach
to the wireless networking environments. Thus, traditional Internet protocols [4,
7, 8] are also heavily used over wireless links. However, a straightforward migra-
tion of such protocols to wireless networks will result in poor performance [6].
In particular, the TCP (transmission control protocol), which has many salient
features that are useful in a wired network, needs significant modifications in
order that it can deliver packets over the wireless links efficiently. Indeed, the
congestion control mechanisms are particularly problematic in wireless environ-
ments.
� This research was supported by a grant from the Research Grants Council of the

HKSAR Government under project number HKU 7162/03E.
Corresponding Author.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 925–932, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



926 Z. Li and Y.-K. Kwok

Congestion is assumed to be the primary reason for packet losses in wired net-
works. When packet losses are detected, the sender’s TCP exponentially throt-
tles down the congestion window size before retransmitting lost packets. It then
backs off its retransmission timer, and enters the congestion avoidance phase.
All these mechanisms are aimed at reducing the load injected into the network.
However, wireless networks have different characteristics compared with wired
networks, such as high bit error rate and occasional blackout. Thus, packet losses
can be due to channel errors rather than congestion. Unnecessary reduction in
network load over a long period of time (TCP’s timers are on the order of tens
of seconds) leads to very inefficient use of the precious channel bandwidth and
high delays.

Recently, many adaptive TCP approaches for various wireless environments
have been suggested. The major objective of these schemes is to make TCP
respond more intelligently to the lossy wireless links. According to [1, 6], there
are three major classes of wireless TCP approaches: end-to-end, link layer, and
split-connection approaches. Unfortunately, all these previous approaches are
only suitable for use in a single wireless link. For ad hoc networks where devices
communicate in a multihop manner, these protocols are inapplicable because we
cannot afford to have each pair of intermediate devices on a multihop route to
execute these wireless TCP protocols [3, 11]. Indeed, if a multihop ad hoc route
is broken (e.g., due to deep fading in one of its links), the performance of a TCP
session over such a route can be severely affected. The most obvious result is that
the TCP sender will eventually discover such breakage after several unsuccessful
retransmissions (i.e., after a long delay due to the large TCP timers) and then
initiate a new session after setting up a new route. This can lead to unacceptably
long delay at the receiver side.

In this paper, we study the performance of two local recovery approaches,
which work by swiftly repairing the broken link using a new partial route. In
Section 2, we describe our proposed local recovery approaches. Section 3 con-
tains our simulation results generated by the NS-2 [12] platform. We give some
concluding remarks in Section 4.

2 The Proposed Approach

2.1 Overview

When the original route is down, we do not simply inform the source that the
route cannot be used. Instead, we suppress the notification which is transmitted
to the source by TCP, and then find a new partial route between the separated
nodes to replace the broken part of the old route. Our approach, remedial in
nature, is a local recovery (LR) technique [5, 13]. The essence of LR is to shield
the route error from the source in the hope that we can avoid incurring the
excessive delay induced by TCP. Indeed, since the problem is found locally, the
remedial work should be done locally.

For example, suppose that due to channel fading and nodes’ mobility, the
link between node N and N + 1 is broken. Firstly, we suppress the upstream



Local Route Recovery Algorithms for Improving Multihop TCP Performance 927

notification generated by TCP. Afterward, we find if the route table of node N
has another route to node N + 1. If there is a new route to the N + 1 (i.e., the
next node of such a route is not N + 1), then the broken route is immediately
repaired by using this route. If no such route exits, local recovery packets will
be sent to repair the route.

A local recovery timer is set to make sure the local recovery process will not
consume more time than to re-establish a new route by the source. Thus, if the
local recovery timer is expired, we give up local recovery and make use of the
full blown ad hoc routing protocol. Figure 1 shows the flow chart of the local
recovery algorithm. We explain the whole process in detail below.

Suppress route error
notification

Look up the route entry to
node N+1 in the route table

Any exit route entry
to node N+1

If the next hop is to
node N+1

LRRREQ

Yes

Yes

No

LRRREP

UPDATE

If local recovery
timer is expired?

No

Yes

NoIf route broken in
node N

Yes

End

Start

No

Fig. 1. The proposed local recovery algorithm.

2.2 Discovering Local Recovery Route

In the remedial process, a node N generates the local recovery route request
(LRRREQ) packet, which includes the following information: type of the packet,
local recovery source address, local recovery destination address, original destina-
tion address, local recovery broadcast identifier (ID), and hop count. Whenever
node N generates a LRRREQ, the local recovery broadcast ID is increased by
one. Thus, the local recovery source and destination addresses, and the local
recovery broadcast ID uniquely identify a LRRREQ. Node N broadcasts the
LRRREQ to all nodes within the transmission range. These neighboring nodes
then relay the LRRREQ to other neighboring nodes in the same fashion. An in-
termediate node, upon receiving the LRRREQ, first checks whether it has seen
this packet before by searching its LRRREQ cache. If the LRRREQ is in the



928 Z. Li and Y.-K. Kwok

cache, the newly received copy is discarded; otherwise, the LRRREQ is stored in
the cache and is forwarded to the neighbors after the following major modifica-
tions are done: incrementing the hop count, updating the previous hop node, and
updating the time-to-live (TTL) field. Figure 2(a) illustrates how the LRRREQ
propagates and how the reverse paths are set up.

When node N + 1 or some other intermediate node, which has a fresh route
to the node N +1, receives the LRRREQ, it then generates a local recovery route
reply (LRRREP) packet, which includes the following information: type of the
packet, local recovery source address, local recovery destination address, original
destination address, hop count, and TTL. The LRRREQ is then unicast to the
local recovery source along the reverse path until it reaches the local recovery
source. During this process, each intermediate node on the reverse path updates
its routing table entry to the local recovery destination and original destination.
Figure 2(b) illustrates the process where the LRRREP is unicast through the
reverse path.

N

N+1

Forward Path

Reverse Path

(a) propagation of the LRRREQ

N

N+1

(b) propagation of the LRRREP

Fig. 2. The route recovery process.

2.3 Route Updating

Although the new partial route is found from node N to node N + 1, updating
is needed for the original route. As described above, there are two cases where
updating of the original route must be done. The first case is the event that the
local recovery destination receives the LRRREQ. The second case is the event
that an intermediate node gets the LRRREQ and it has a fresh route to the
local recovery destination in its routing table.

According to the different directions, forward and backward updatings are
carried out. The forward updating process is triggered by receiving the update
packet, which contains the following information: type of packet, update desti-
nation address, original destination address, hop count, and TTL. The backward
updating process is triggered by receiving the LRRREP packet. In any updating,
the original route should be re-established. In the first case, only backward up-
dating is done, while in the second case, both forward and backward updatings
are needed.

Figure 3(a) illustrates how the updating process is carried out in the two
cases. In the former case, node N +1 receives the LRRREQ, and thus, backward



Local Route Recovery Algorithms for Improving Multihop TCP Performance 929

S N

1

2

3

D

N+1

... ...

Current route
Forward update

Backward update

(a) forward and backward updating

S N

1

2

3

D

N+1

... ...

Current route
Forward update

Backward update

...

...

(b) local recovery algorithm for find-
ing a new partial route directly to
the destination

Fig. 3. Illustration of the two route recovery approaches.

updating is done through the route of nodes N + 1, 3, 2, 1, N . In the latter
case, forward updating is done through the route of nodes 2, 3, N + 1, while
backward updating is done through the route of nodes 2, 1, N . The detailed
updating process is as follows: when node 2 receives the LRRREQ and it has a
route entry to node N +1, node 2 sends the update packet to node 3 according to
the route entry to node N +1. Upon receiving the update packet, node 3 should
update the route entry to the original destination node D and then check if it
is the local recovery destination. The same forward updating process continues
until the update packet is received by the local recovery destination. On the other
hand, LRRRREP is sent to node 1 following the reverse route. Upon receiving
the LRRREP, node 1 should update the route entry to the original destination
node D and then check if it is the local recovery source. The same backward
updating process continues until the LRRREP is received by the local recovery
source.

2.4 Local Recovery of a Route to Destination

This variant of our approach is similar to the mechanism we described above.
The only difference is that the goal of route reconstruction is to find a new
partial route from node N directly to the destination. Figure 3(b) illustrates
this algorithm.

3 Performance Results

3.1 Simulation Environment

In our study, we use packet level simulations to evaluate the performance of TCP
in ad hoc networks. The simulations are implemented in Network Simulator (NS-
2) [12] from Lawrence Berkeley National Laboratory (LBNL) with extensions for
wireless links from the Monarch project at Carnegie Mellon University [2]. The
simulation parameters are as follows:

– number of nodes: 50;
– testing field: 1500m× 300m;



930 Z. Li and Y.-K. Kwok

– mobile speed: uniformly distributed between 0 and MAXSPEED (we choose
MAXSPEED to be 4, 10, 20, 40, 60m/s, respectively);

– mobility model: modified random way point model [14];
– traffic load: TCP Reno traffic source;
– radio transmission range: 250m;
– MAC layer: IEEE 802.11b.

Each simulation is run for 200 seconds and repeated for ten times. We com-
pared four protocols in our simulations. They are DSR (Dynamic Source Rout-
ing) [9], AODV (Ad Hoc On-Demand Distance Vector) [10], LR1 and LR2. LR1
is the local recovery protocol in finding the new route between node N to the
destination. LR2 is the local recovery protocol in finding the new route between
node N and node N + 1.

3.2 Performance Metrics

To evaluate TCP performance in different routing protocols, we compare them
using four metrics:

1. Average End-to-End Delay: the average elapsed time between sending by
the source and receiving by the destination, including the processing time
and queuing time.

2. Average Throughput: the average effective bit-rate of the received TCP pack-
ets at the destination.

3. Delivery Rate: the percentage of packets reaching the destination (note that
some packets are lost during the route breakage and the route reconstruction
time).

4. Control Overhead: the data rate required by the transportation of the routing
packets.

3.3 Simulation Results

Due to space limitations, our simulation results are summarized in Figure 4.
Compared with the AODV protocol, the two LR protocols have lower end-to-
end delays, higher throughput, and lower control overhead. The reason is that
when the route is broken, the local recovery process can efficiently reconstruct the
route, without incurring excessive TCP time-out delays. LR2 exhibits a better
performance than LR1. The reason is that on average, the time consumed by
node N to find node N + 1 is less than that to find the destination.

DSR has the worst performance among all compared protocols. Since it drops
much more packets than other protocols. In particular, when the mobility is
increased, the delivery rate decreases rapidly. However, the other three protocols
can keep a stable delivery rate with increasing speed.



Local Route Recovery Algorithms for Improving Multihop TCP Performance 931

(a) average delay (b) average throughput

(c) average rate of successful delivery of
packets

(d) average control overhead

Fig. 4. Simulation results.

4 Conclusions

In this paper, we study the problem of improving multihop wireless TCP per-
formance in an ad hoc network. TCP performance over a single wireless link is
notoriously poor due to its long retransmission delays in error recovery. The long
delay problem is even more acute in a multihop wireless environment. We com-
pare four approaches in route error recovery: two of them are based on complete
replacement of the old route, while the other two are based on local reconstruc-
tion of the broken route. Our simulation results generated by the NS-2 platform
using TCP Reno traffic sources show that the local recovery approaches signifi-
cantly outperform the complete replacement approaches.

References

1. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A Comparison
of Mechanisms for Improving TCP Performance over Wireless Links,” IEEE/ACM
Transactions on Networking, vol. 5, no. 6, pp. 756–769, Dec. 1997.

2. J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A Performance
Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” Proc.
MOBICOM, pp. 85–97, Oct. 1998.



932 Z. Li and Y.-K. Kwok

3. K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A Feedback-Based
Scheme for Improving TCP Performance in Ad Hoc Wireless Networks,” IEEE
Personal Communications, vol. 8, no. 1, pp. 34–39, Feb. 2001.

4. D. Comer, Internetworking with TCP/IP, vols. 1-3, Prentice Hall, 1991.
5. R. Duggirala et al., “Performance Enhancements of Ad Hoc Networks with Lo-

calized Route Repair,” IEEE Trans. Computers, vol. 52, no. 7, pp. 854–861, July
2003.

6. H. Elaarag, “Improving TCP Performance over Mobile Networks,” ACM Comput-
ing Surveys, vol. 34, no. 3, Sept. 2002.

7. K. Fall and S. Floyd, “Simulation Based Comparisons of Tahoe, Reno, and SACK
TCP,” ACM Computer Communications Review, vol. 26, no. 3, pp. 5–21, 1996.

8. S. Floyd, “TCP and Explicit Congestion Notification,” ACM Computer Commu-
nications Review, vol. 24, no. 5, pp. 10–23, 1994.

9. D. B. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Net-
works,” in Mobile Computing, T. Imielinski and H. Korth (eds.), Chapter 5, Kluwer
Academic Publishers, 1996.

10. C. E. Perkins, E. M. Royer, and S. R. Das, “Ad Hoc On-Demand Distance Vec-
tor(AODV) Routing,” IETF Internet Draft, draft-ietf-manet-aodv-10.txt, 2002.

11. D. A. Maltz, J. Broch, J. Jetcheva, and D. B. Johnson, “The Effects of On-Demand
Behavior in Routing Protocols for Multihop Wireless Ad Hoc Networks,” IEEE J.
Selected Areas in Comm., vol. 17, no. 8, pp. 1439–1453, Aug. 1999.

12. The UCB/LBNL/VINT Network Simulator (NS),
http://www.isi.edu/nsnam/ns/, 2003.

13. D. Tian and N. D. Georganas, “Energy Efficient Routing with Guaranteed Delivery
in Wireless Sensor Networks,” Proc. WCNC 2003, vol. 3, no. 1923–1929, 2003.

14. J. Yoon, M. Liu, and B. Noble, “Random Waypoint Considered Harmful,” Proc.
INFOCOM 2003.


	1 Introduction
	2 The Proposed Approach
	2.1 Overview
	2.2 Discovering Local Recovery Route
	2.3 Route Updating
	2.4 Local Recovery of a Route to Destination

	3 PerformanceResults
	3.1 Simulation Environment
	3.2 Performance Metrics
	3.3 Simulation Results

	4 Conclusions
	References



