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Abstract. In an ad-hoc wireless network each station has the capacity
of modifying the area of coverage with its transmission power. Control-
ling the emitted transmission power allows to significantly reduce the
energy consumption and so to increase the lifetime of the network. In
this paper we focus on the Minimum Energy Consumption Broadcast
Subgraph (MECBS) problem [1, 2, 6], whose objective is that of assi-
gning a transmission power to each station in such a way that a message
from a source station can be forwarded to all the other stations in the
network with a minimum overall energy consumption. The MECBS pro-
blem has been proved to be inapproximable within (1 − ε) ln n unless
NP ⊆ DTIME(nO(log log n)) [2, 6], where n is the number of stations. In
this work we propose a 2Hn−1-approximation greedy algorithm which,
despite its simplicity, improves upon the only previously known ratio of
10.8 lnn [1] and considerably approaches the best-known lower bound on
the approximation ratio.

1 Introduction

Ad hoc wireless networks have received significant attention during the recent
years. In particular, they emerged due to their potential applications in emer-
gency disaster relief, battlefield, etc [5, 7]. Unlike traditional wired networks or
cellular networks, they do not require the installation of any wired backbone
infrastructure. The network is a collection of transmitter/receiver stations each
equipped with an omnidirectional antenna which is responsible for sending and
receiving radio signals. A communication is established by assigning to each
station a transmitting power.

A fundamental problem in ad hoc wireless networks is to support broadca-
sting, that is to allow a source station to transmit a message to all stations in the
network. A communication from a station s to another t occurs either through
a single-hop transmission if the transmitting power of s is adequate, or through
relaying by intermediate stations, otherwise. One of the main advantages of ad-
hoc networks is the ability of the stations to vary the power used in a transmission
in order to reduce the power consumption and so to increase the lifetime of the
network.
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In this paper we focus on the “energy-efficient” broadcasting, where the ob-
jective is to designate the transmission powers at which each station i has to
transmit in such a way that a communication from a source station s to all the
other stations can be established and the overall energy consumption is mini-
mized. This problem is referred to as Minimum Energy Consumption Broadcast
Subgraph (MECBS, for short) [1, 2].

An ad hoc wireless network is usually modelled by (i) a complete graph G(S)
whose n vertices S = {1, . . . , n} represent radio stations and (ii) a symmetric
cost function c : S × S �→ IR+ which associates each pair of stations i and j
with its transmission cost, that is the power necessary for exchanging messages
between i and j. Clearly, c(i, i) = 0 for every station i ∈ S. A power assignment
ω : S �→ IR+ to the stations induces a directed weighted graph Gω = (S, E),
called the transmission graph, such that an edge 〈i, j〉 belongs to E if and only
if the transmission power of i is at least equal to the transmission cost from i
to j, i.e., ω(i) ≥ c(i, j). The cost of a power assignment ω is the overall power
consumption yielded by ω, i.e., cost(ω) =

∑n
i=1 ω(i).

The Minimum Energy Consumption Broadcast Subgraph (MECBS) problem
described above is then defined as follows:
– Input. A set S of n sender/receiver stations and a source station s ∈ S.
– Output. A power assignment ω such that the overall energy consumption

cost(ω) is minimized and the induced transmission graph Gω contains a
directed spanning tree rooted at s.

The MECBS problem has been proved to be inapproximable within (1−ε) lnn
unless NP ⊆ DTIME(nO(log log n)) [2, 6] where n is the number of stations.
The only known logarithmic approximation algorithm for the problem is due to
Caragiannis et al. who presented a 10.8 lnn-approximation algorithm which uses
a reduction to the Node-Weighted Connected Dominating Set problem [1].

This paper takes an important step toward the reduction of the gap between
these two bounds. Indeed, we propose a 2Hn−1-approximation greedy algorithm
for the problem that is returning assignments of cost at most twice the cost of the
best possible approximated solution. Besides the reduction of the existing gap,
our algorithm confirms the strict relationship occurring between the MECBS
problem and the Set Cover problem. In fact, as also suggested by the negative
results in [2], our result reinforces the intuition that MECBS can be seen as a
set covering problem with additional connectivity requirements.

The paper is organized as follows. In section 2 we first introduce the nec-
essary notations and definitions, then we describe our algorithm. Section 3 is
dedicated to the correctness proof and to the performance analysis of the pro-
posed algorithm, and, finally, Section 4 presents future directions.

2 An Improved Logarithmic Approximation Algorithm

In this section we present our logarithmic approximation algorithm which, given
(i) the complete weighted graph G(S) with vertices S = {1, . . . , n} representing
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stations and with a cost function c : S × S �→ IR+ which associates each pair of
stations i and j with its transmission cost, and (ii) a vertex s, returns a power
assignment ω : S �→ IR+ which induces a transmission graph Gω containing a
directed spanning tree rooted at s.

Before presenting the algorithm, we introduce a few preliminary notations.

Notations. For any station i, let Ci =
⋃

j∈S{c(i, j)} denote the set of all the
possible level powers allowing i to transmit to any other station j in the network
through a single-hop transmission. It is important to notice that even if, by
definition, for any station i, the transmission power ω(i) can range in the interval
[0,∞], the set of possible power assignments is actually the discrete set Ci of at
most n− 1 values.

For any transmission power � ∈ Ci assigned to a station i, S�(i) = {j ∈ S |
j 	= i and � ≥ c(i, j)} is the set of all the stations j distinct from i into the area
of coverage of i, and P�(i) = {X ∈ P | X ∩ S�(i) 	= ∅} is the family of sets
belonging to a given partition P and containing stations covered by i.

Finally, given a power assignment ω associating a power transmission ω(i) to
each station i, Π(s, Gω) is the set of vertices i connected to a vertex s through
a directed path from s to i, while Gω[X ] is the subgraph of Gω induced by a set
X ⊆ S.

2.1 The Greedy-Assignment Algorithm

We propose the “Greedy-Assignment” algorithm, which uses a greedy ap-
proach for solving the MECBS problem. Indeed, in order to compute a power
assignment ω, it initially assigns a transmission power zero to every station in S;
then it iteratively uses a specific greedy rule to select a station and increases its
transmission power until ω induces on S a weakly connected transmission graph
Gω. Finally, this assignment ω is re-adjusted in order to grow the directed span-
ning tree rooted at s, one station at a time, without destroying any connection
previously established.

The algorithm works as follows. The loop 3 iteratively manages a partition
P of stations initially composed of n singleton sets and a power assignment ω
identically zero at the beginning. At each stage, P represents all the weakly
connected components of Gω . This invariant is guaranteed by the “Merge”
procedure which, given the pair 〈i, �〉 chosen at line 3.(a), merges all the sets
in P�(i) together with S�(i) ∪ {i} in such a way that, after line 3.(b), their
union induces on Gω a new weakly connected subgraph. At the end of loop 3,
all the sets contained in the partition P are merged together, denoting that the
transmission graph Gω is weakly connected.

Line 3.(a) is the greedy decision-making step: a station i and a transmission
power � ∈ Ci are chosen such that |P�(i)| components of Gω are connected
with i with a minimum average power consumption.

Definition 1. Given a partition P of S, a station i ∈ S and a transmission
power � ∈ Ci, we define the cost-effectiveness ε�(i,P) of � at i, with respect
to P, as the average transmission power at which i covers sets in P�(i), i.e.,
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ε�(i,P) =
�

|P�(i)| .

If P�(i) = ∅ we set ε�(i,P) =∞.

According to Def. 1, at line 3.(a) a pair 〈i, �〉 is chosen such that, after setting
ω(i) = � (see line 3.(b)), the cost-effectiveness ε�(i,P) is minimum. Then all
the components in P�(i) are merged together with S�(i) ∪ {i} at line 3.(c).

Finally, The loop 5 re-adjusts the transmission powers of stations i not con-
nected to s through a directed path, without destroying any connection previ-
ously established, until the transmission graph contains a directed spanning tree
rooted at s.

Greedy-Assignment (G(S), s)

1. P ← {{1}, {2}, ..., {n}}
2. ω(i)← 0 for every station i ∈ S.
3. while |P| > 1 do

(a) Choose the pair 〈i, �〉 with the lowest cost-effectiveness ε�(i,P), for
i ∈ S and � ∈ Ci

(b) ω(i)← �
(c) P ← Merge (G(S),P , i, �)

4. ν = ω
5. while Π(s, Gω) 	= S do

(a) choose a vertex i ∈ Π(s, Gω) and a vertex j 	∈ Π(s, Gω) such that there
exists a directed edge 〈j, i〉 in Gν

(b) ω(i)← ν(j)
6. return ω

Merge (G(S),P , i, �)

– S+
�(i)← (

⋃
X∈P�(i) X) ∪ S�(i) ∪ {i}

– P−
�(i)← P�(i) ∪ {S�(i) ∪ {i}}

– return P \ P−
�(i) ∪ {S+

�(i)}

The correctness proof of the algorithm is based on the two following invariant
properties.

2.2 Invariant Properties

Let us denote by P(k) the partition of stations at the end of the k-th iteration
of loop 3 and by ω

(k)
1 and ω

(k)
2 the power assignments returned at then end of

the k-th iteration of loop 3 and loop 5, respectively.
The first important property states that, although different transmission

powers �1, . . . , �m may be assigned to a same station i, such a sequence is
increasing. This guarantees that re-adjustments (see lines 3.(b) and 5.(b)) never
destroy connections previously established.
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Property 1. For any station i ∈ S and for any constant k, l, m, q such that k < l

and m < q it holds: ω
(k)
1 (i) ≤ ω

(l)
1 (i) ≤ ω

(m)
2 (i) ≤ ω

(q)
2 (i).

Proof. Initially, ω(i) = ω
(0)
1 (i) = 0 (line 2). Let ω(i) be set to � at the k-

th iteration of loop 3, i.e., ω
(k)
1 (i) = �. The “Merge” procedure (line 3.(c))

makes the union of all the sets in P(k)
� (i) and S�(i)∪{i}. Hence, since for every

�′ ∈ Ci such that �′ ≤ � it holds S�′(i) ⊂ S�(i), when h > k it must be
P(h)

�′ (i) = ∅ and, as a consequence, ε�′(i,P(h)) =∞. This implies that it cannot
be ω

(k)
1 (i) > ω

(h)
1 (i) for every h > k. Let ω

(0)
2 denote the assignment ω (= ν)

at line 4. Now, consider the m-th iteration of loop 5, for any m ≥ 1. At line
5.(b) the transmission power ν(j) is assigned to i only if the edge 〈j, i〉 ∈ Gν but
〈i, j〉 	∈ G

ω
(m)
2

. Then it must be ν(j) > ω
(m)
2 (i). ��

Now we are able to prove that, for any k, at the end of the k-th iteration
of loop 3, the partition P(k) always contains sets of stations that induce on
G

ω
(k)
1

weakly connected subgraphs. In other words, P(k) represents all the weakly
connected components of G

ω
(k)
1

.

Property 2. For each set X ∈ P(k), Gω(k) [X ] is weakly connected.
Proof. This is obviously true for k = 0. For any k ≥ 1, at the k-th iteration of
loop 3, a pair 〈i, �〉 is chosen in such a way to increase to � the transmission
power associated with i. By construction, each set in P�(i) contains at least
one station belonging to S�(i), so S+

�(i) necessarily induces on the transmission
graph G

ω
(k)
1

a weakly connected subgraph. ��

3 Correctness and Performance Analysis

In the following section we provide a correctness proof of our algorithm, by sho-
wing that the power assignment ω returned by it actually induces a transmission
graph Gω which contains a directed spanning tree rooted at a source station s.
Due to space limitations, a few details are omitted. Finally, we show that it has
an approximation ratio of 2Hn−1.

Theorem 1 (Correctess). The output ω returned by the Greedy-Assign-
ment algorithm is feasible.
Proof. The proof is made of two parts: first we prove that ω at the end of loop
3 (i.e., ν) induces on S a weakly connected transmission graph; then we show
that the graph Gω induced by the output ω admits a directed spanning tree
rooted at s. The former is a trivial consequence of Prop. 2. By Prop. 1, no re-
adjustment at line 5.(b) can destroy connections previously established, then the
latter is clearly true if the algorithm terminates, as it is guaranteed by the while
condition of loop 5. Thus, we only need to prove that loop 5 always terminates.
At a generic iteration of loop 5, if Π(s, Gω) 	= S, since Gν is weakly connected,
there must exist two vertices i and j satisfying the conditions in line 5.(a). The
claim follows by noting that adding the power assignment in 5.(b), by Prop. 1,
we have that the set Π(s, Gω) expands. ��



954 V. Bilò and G. Melideo

Given a sequence of pairs F = 〈i1, �1〉, . . . , 〈ir, �r〉, let cost(F) =
∑r

j=1 �j .
Each transmission power �j can be spread among the sets in P�j (ij) by assi-
gning each set a cost equal to the cost-effectiveness of �j at ij, with respect
to P(j). That is, for every X ∈ P�j (ij), cost(X) = ε�j (ij ,P(j)). If TF de-
note the family of sets TF =

⋃r
j=1 P�j (ij), one has: cost(F) =

∑r
j=1 �j =∑

X∈TF cost(X). Observe that if we consider the sequence A of the pairs chosen
by our algorithm, clearly |TA| = n− 1. Number these sets in the order in which
they are merged by the algorithm breaking ties arbitrarily.

Let OPT be the cost of an optimal solution ω∗. At any iteration ki when Ti

is merged the following lemma holds.

Lemma 1. For any i ≤ n−1 there exists a pair 〈j, �〉 having a cost-effectiveness
ε�(j,P(ki)) ≤ OPT

n−i .

Proof. Let F (i) be the sequence of the pairs chosen by the optimal algorithm such
that ω∗(j) > ω

(ki)
1 (j). Clearly, OPT ≥ cost(F (i)) =

∑
j|〈j,�〉∈F(i) ω∗(j). Now,

suppose by contradiction that for every pair 〈j, �〉 ∈ F (i), it holds ε�(j,P(ki)) >
OPT
n−i . Since by definition, the cost-effectiveness of a pair 〈j, �〉 cannot decrease

as i increases and |TF(i) | = n−i, we have that OPT ≥ cost(F (i)) > (n−i)OPT
n−i =

OPT . ��

Theorem 2 (Performance Guarantee). The Greedy-Assignment algo-
rithm has an approximation ratio of 2Hn−1.

Proof. We first show that cost(ν) ≤ Hn−1 ·OPT , then that cost(ω) ≤ 2 ·cost(ν).
Since the algorithm chooses the power assignment with the lowest cost-

effectiveness, from the above lemma we have that cost(Ti) ≤ OPT
n−i . Thus, the

solution at line 4 is such that cost(ν) =
∑|T |

i=1 cost(Ti) =
∑n−1

i=1 cost(Ti) ≤∑n−1
i=1

OPT
n−i = OPT

∑n−1
i=1

1
i = Hn−1 ·OPT .

At any iteration of loop 5 a transmission power ν(j) is assigned to i only if
the conditions of line 5.(a) are enjoyed by the pair of stations i and j. Such an
assignment establishes a directed path from s to j, then j can be chosen at step
5.(a) at most once. Consequently, cost(ω) ≤ 2 · cost(ν). ��

Notice that the approximation ratio 2 ·Hn−1 is essentially tight, as shown by
the following example.

Example. When the Greedy-Assignment algorithm runs on the input graph
in Fig. 1.a) it computes the partial solution ν depicted in Fig. 1.c). Thus, in the
case in which n is an odd number:

cost(ν) =
∑�n−1

2 �−1
j=0

1
�n−1

2 �−j
=

∑�n−1
2 �

j=1 j = H�n−1
2 � = Hn−1 − 1.

Next, loop 5 exactly doubles all the transmission powers, hence cost(ω) =
2Hn−1 − 2. Since the cost of the optimal solution in Fig. 1.b) is 1 + ε, we have
that the approximation factor of our algorithm is tight up to low order terms.
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Fig. 1. a) The input graph. Missing edges are assumed to have an infinite cost. b) The
optimal solution. c) The partial solution ν. d) The solution ω.

4 Future Directions

We presented a 2Hn−1-approximation algorithm for the MECBS problem [1, 2,
6], which, despite its simplicity, improves the only known algorithm with a ratio
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of 10.8 logn [1] and considerably approaches the best-known lower bound of log n
on the approximation ratio [2, 6]. We leave the natural open problem of brid-
ging this gap. Moreover, once broadcasting models are developed for node-based
models, future studies could address the impact of mobility and limited resources
(both bandwidth and equipment). A significant restriction of the MECBS pro-
blem, denoted MECBS[Nα

d ], consists in considering the stations located in the
d-dimensional Euclidean Space, and a cost function s.t. c(i, j) = dist(i, j)α,
where α is the distance-power gradient. It has been proved that the MECBS[Nα

d ]
problem is NP-Hard for α > 1 and d > 1, while it is in P if α = 1 or d = 1 [1–3,
6]. The best known approximation algorithm, called MST , has been presented
and compared with other heuristics (SPT, BIP) through simulations on random
instances in the case d = α = 2 [7]. Its performance has been investigated by se-
veral authors [2, 6, 4] and the evaluation of its approximation ratio progressively
reduced till 3d − 1 for every α ≥ d [4]. Starting from these results, a further
left open question is that of comparing through simulations our algorithm with
MST, SPT and BIP when restricting to the special case of MECBS[Nα

d ].
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