A Parallel Programming Tool
for SAR Processors*

M. Lettere, D. Guerri, and R. Fontanelli

Synapsis Srl, Livorno, Italy

Abstract. In the context of Italian Space Agency COSMO SkyMed
project a quantitative and qualitative study of a set of image process-
ing algorithms for SAR Processors has been carried out. The algorithms
showed some interesting patterns in terms of structure and parallelism
exploitation. During the activity of prototyping and analysis, an abstrac-
tion (SPE Chain Model) of the algorithmic behaviour has been defined
in order to simplify performance modeling, design and implementation of
parallel image processing algorithms. According to the defined abstrac-
tion, a parallel programming tool (SPE- Sar Parallel Executor) has been
developed. SPE enables the implementation of efficient, structured and
object oriented parallel image processing algorithms conforming to the
SPE Chain Model and reuse of pre-existing sequential code. A set of
image processing algorithms belonging to different classes of applications
have been tested to validate both the SPE Chain Model and the SPE
programming tool. The results show that no significant difficulties arise
in the porting of already existing code to SPE and that writing new
parallel algorithms is intuitive and productive and provides, at the same
time, concrete high performance solutions required in real-time industry
environments.

1 Introduction

Earth observation is based on the application of computationally challenging
image processing algorithms on image data. Images are acquired at fine geometric
resolutions and raw data is quite huge (26500*5600 double precision complex
pixel values for a raw image [2]). This well known fact, along with requirements
related to real-time industry production, led to a first study which focused on
quantitative aspects (flops, memory usage) of a large set of algorithms [2]. The
target of this study was to show how parallelism could be employed to reduce
the intrinsic weight of some data and computation intensive operations.

A second study focused on qualitative aspects such as logical, functional and
data dependencies among computational steps of an algorithm. The target was
to define a parallel programming model, called SPE Chain Model, to help

* Big thanks goes to Gustavo Ovando, J.M.Moreno and M.J.Stefanini from Argen-
tinian Space Agency (CONAE). This work has been partially supported by the
CINECA Institute.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 980-987, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Parallel Programming Tool for SAR Processors 981

developers, not necessarily (hpc) experts, to design parallel image processing
algorithms.

According to the SPE Chain Model, the considered algorithms have been
split into sequences of Macro Phases (MP) which represent aggregations of
logically and functionally related computation steps. For each MP, quantitative
aspects and qualitative aspects have been analyzed in order to establish analytical
performance models used for predicting performance.

The main requirements for the SPE Chain Model were similar to those of
similar tools [8] [7] [6] [9]: strong object oriented (O0) design [1], modularity,
reusability and adherence to the analytical performance models. However, the
SPE Chain Model was born from a generalization activity based on the study of
a set of SAR algorithms. Thus it misses the richness and the complexity of other
general purpose models (Active Objects, Distributed Shared Memory, Dynamic
Load Balancing, wide area distribution and mobile agents).

A programming tool called SPE has been developed to implement algorithms
designed according to the SPE Chain Model. SPE is based on two class libraries:
SPEAPI used for writing parallel image processing algorithms and SPEENG
a set of runtime support classes.

A set of different case studies using SPE shows that the model is very stable
and general. In a scenario where domain experts cooperate with hpc develop-
ers, the design of new parallel image processing algorithms, turned out to be
very intuitive and productive. There are also no significant difficulties porting
already existing code to SPE. Tested algorithms show that the performance of
their SPE implementations closely matches the performance of pre-existing, low
level implementations, demonstrating that the use of high level programming
constructs doesn’t introduce a significant overhead. Moreover, algorithms imple-
mented from scratch with SPE, are very efficient despite the short time it takes
to develop them.

This paper presents the SPE Chain Model (section 2), the implementation
of SPE (section 3) and the results obtained with two case study algorithms
(section 4).

2 The SPE Chain Model

This section shows how an algorithm is designed and executed using SPE Chain
Model and SPE.

2.1 Algorithm Design

Qualitative analysis of the studied algorithms, has shown that image processing
algorithms can be split into sequences of Macro Phases (MP). MPs are aggrega-
tions of computational steps that are functionally related because they exploit
the same data, share a common stencil or can be executed concurrently.

For the SPE Chain Model, an algorithm is a sequence of MPs connected
by entities called Bindings. Bindings are used to exchange data among MPs

982 M. Lettere, D. Guerri, and R. Fontanelli

loop until TC i

v MPi ob i1——

— ibi -
ob i2——

Fig. 1. Example of Macrophase Execution Loop.

<COMP:0>

B FILE
[SCATTER/GATHER
H pr2pP <COMP: 1>

Fig. 2. Example of parallel program with 2 Node classes.

according to a specific transfer policy called the type of the Binding. A special
kind of Binding, called FILE Binding, connects a MP to the file system.

Figure 1 shows the behaviour, or Ezecution Loop of a Macro Phase M P;.
M P; receives data from a set of preceding MPs through its Input Binding ib;.
It executes its code C; and finally it sends the output data through its Output
Bindings (in order ob;; and ob;2) to the following MPs. If M P; is iterative, its
Ezxecution Loop is repeated until a programmable Termination Condition TC;
is verified.

2.2 Algorithm Execution

For the SPE Chain Model, a parallel program consists of a number of Nodes
organized in Node Classes. A Node matches the concept of process. A Node
Class is a group of possibly related Nodes. Bindings match the concept of inter-
process communications [5].

A Node is programmed by statically assigning to it a sequence of Macro
Phases and the parallelism degree (number of Nodes) of a Node Class is set
statically in the algorithm parameters.

Nodes are identified by a pair <class-name:id> composed of their class and
their class internal Node ID.

In the program of figure 2, data is read and split in two sub-images by Macro
Phase A. Each Macro Phase B receives a sub-image through its P2P Binding
and executes the algorithm specific sequential code on the sub-image. Finally the
output sub-images are sent through a P2P QOutput Binding to a Macro Phase
C' who is responsible for recollecting the output image data and write it to the
filesystem.

Figure 2 shows one possible allocation of the program where the I0 Class
has only one Node <I10:0> who is responsible for distributing and recollecting

A Parallel Programming Tool for SAR Processors 983

| SPECHG Cbm!-yn EFEENE_Env { SPEAPI_Resourcakactory | SPLAF| Farametwrs
sl wnszdafizat sl - UsuiFarameters
_— sedalari)
| !FEENE_Dah “¥ . BPEEMG_Farade « | SPEARI Adgerithm (-] TR
% e — -='|.m-u Ry 5

" 1o A e el T
SPEENG_IO |EPEEHE comp Ir i “ JE'

= Emuu'ui'um na!l.rli_'
SPEAP] Inpul Breling
et el e o —]—"I n
B = SFCAPL_Fhase

SPEAM_DhpinEinding | et | UscrPhasc
rarfgues(il k

s

Fig. 3. Class diagram of SPE.

the data (A and C') and COMP Class Nodes execute in parallel (2 process) the
algorithm specific code.

Available types of Bindings are FILE, P2P (point-to-point), MP (multi-
point), BKCH (block-change), SCATTER, GATHER, ON_DEMAND and
ROUND_ROBIN.

Using pairs of Input/Output Bindings, it is possible to implement a great
variety of communication schemes with well-known semantics and many of the
common parallel patterns like Farms or Pipelines [5].

There is a special type of Binding called BLOCKCHANGE (BKCH).
Image data is often seen as a two-dimensional matrix. During the computation
of an image processing algorithm it is often necessary to perform some opera-
tions on whole rows or on whole columns of the matrix [3]. In SPE the data is
split among a set of Nodes according to a specific storing order (row-major or
column-magor). A couple of BKCH Bindings changes the storing order of the
distributed image data. Assuming the BKCH operation as a standard operation
in SPE, makes it possible for the programmer to benefit from a very optimized
implementation of the routine. The way SPF is designed makes it possible for the
SPE development team to rapidly integrate other highly specialized operations
or communication patterns. This can be achieved by subclassing an abstract
Binding class and overriding the methods that implement the underlying com-
munication strategy.

3 A Sample Implementation of SPE

This section describes a sample implementation of SPE based on a class library
for writing parallel algorithms conforming to the SPE Chain Model (SPEAPI)
and a collection of classes that implement the runtime support for executing
SPEAPI algorithms (SPEENG).

The class library SPEAPI was designed to ease the development of object
oriented, modular, reusable, strong structured parallel image processing algo-
rithms. The target is to enable a programmer with no particular hpc expertise, to
design a parallel program by simply implementing the abstract methods init(),
run(), close() and evaluate Termination() of the SPEAPI classes as shown in
figure 3.

984 M. Lettere, D. Guerri, and R. Fontanelli

SPEAPI_Algorithm models a parallel algorithm and contains the sequence of
SPEAPI_MacroPhase instances. SPEAPI_MacroPhase matches a Macro Phase
and contains the lists of SPEAPI_Binding and a sequence of SPEAPI_Phase
instances. The SPEAPI_Phase class is used for wrapping sequential code. SPE-
API_Binding classes encapsulate the concept of Bindings.

SPEAPI_ResourceFactory is a singleton factory class used for requesting
memory buffers allocation.

SPEENG implements the runtime support for algorithms written using SPE-
API with the idea to distribute responsibilities across a set of systems accessible
through a singleton facade class called SPEENG_Fucade.

SPEENG_ComSyn and SPEENG_IO are responsible for executing specific
communication and file system access strategies related to SPEAPI_Binding in-
stances.

For implementing these systems, double-buffering and asynchronous com-
munications have been used to optimize performance and overlap computation
and communication [5]. Moreover, SPEENG currently adopts MPI as com-
munication software and standard POSIX IO for filesystem access. These two
classes are wrapper classes that isolate SPE from all the implementation choices.
Thus, adopting different choices implies just rewriting part of the code of SPE-
ENG_ComSyn or SPEENG_IO.

SPEENG_Data is a factory class responsible for handling memory allocation
and deallocation requests. SPEENG_Env and SPEENG_Comp are responsible
respectively for storing environment information and managing the Ezecution
loop of an SPEAPI_Algorithm.

As shown in figure 3, SPEENG_Comp accesses SPEAPI_Algorithm for man-
aging its Ezecution loop. SPEAPI_Algorithm accesses SPEENG_Facade for re-
questing runtime support services (communication, IO, status or error notifica-
tion, execution time). SPEAPI_ResourceFactory accesses SPEENG_Facade for
requesting memory handling facilities.

4 SPE: Two Case Studies

This section shows two algorithms developed with the described sample imple-
mentation of SPE. The results, measured in terms of generality of the model,
usability of SPEAPI and performance, show that there are no significant diffi-
culties porting already existing code to SPF and the development of new efficient
and scalable parallel algorithms, in a scenario where domain experts cooperate
with hpc developers, is intuitive and productive.

The performance tests have been executed on the CINECA Linuxr Be-
owulf Cluster which has a peak performance of about 3 TeraFlops and is com-
posed of 256 dual-processors (SMP) connected through a 2 Gbit/s network
(http://www. cineca.it/HPSystems/Resources/).

CSA (Chirp Scaling Algorithm) is an image focusing algorithm for SAR pro-
cessing. The SPE development team had already made an experience in porting

A Parallel Programming Tool for SAR Processors 985

. BLOCKCHANGE D FILE a SCATTER/GATHER D P2p

Fig. 4. SPEAPI structure of CSA.

1 10

e completion tows - o5 spesdup ——
160 - * predicted complefion fmes -~ 1 -
equeniial compiefion Bme = opomal sy

2
2 e e u om e

5

Fig. 5. Completion time, in seconds, (left) and speed up (right) for CSA.

a sequential prototype to a very optimized parallel implementation using low
level tools (C' and MPI). The porting to SPE validated the assessment related
to the ease of integrating already existing code into a parallel program designed
with SPEAPI. Moreover the performance of the SPEAPI version closely ap-
proximated the performance of the optimized low level implementation and of
other similar solutions [4]. Figure 4 shows the SPEAPI structure of the algo-
rithm. CSA first computes on the columns (azimuth) of the matrix representing
the image. The computation is based on Fourier Transforms (FT) that require
whole columns to be accessible locally on a Node. Data is stored inside Macro
Phase Azl in column-major order. The second step of CSA computes F'T on
whole rows of the image (range). Thus the Bindings between Azl and Rng are
of type BLOCKCHANGE and a communication implies a change in the storing
order. Az2 is created to implement the last inverse F'T in azimuth direction and
another BLOCKCHANGE between Rngl and Az2 is necessary. The implemen-
tation requires two global exchanges of image data among all the COMP Class
Nodes. Figure 5 shows the completion time with a varying number of COMP
Class Nodes on image blocks sized 540 Mbyte. The adherence to the values pro-
vided by the analytical model can easily be seen and the speedup, compared to
other results [3], is very encouraging.

P-FLOOD is an iterative algorithm that works on raster images and DEM
(digital elevation model [2]) data to study the flow of water during a rainy
timespan. P-FLOOD has been designed and developed from scratch using SPE-
API and its development demonstrated how SPEAPI can be used in a scenario
where domain experts work together with programmers at the implementation

986 M. Lettere, D. Guerri, and R. Fontanelli

_SCOMP0>

. P2P
D FILE
E SCATTER/GATHER
[iterative Macro Phase

Fig. 6. SPEAPI structure of P-FLOOD.

- [p— - = .
FLOCO comgistion mes. —— phicod speedup ——
P-n.cu:lmnrum«m 1 optimal speedup =~

&

B

R IR

a
2L

{17 . . 1
12 4 1 " =

a

2 4 [l 1 -]

Fig. 7. Completion time, in seconds, (left) and speed up (right) for P-FLOOD.

of a parallel image processing algorithm. In P-FLOOD the data is read from
a file by Node < IO : 0 >. The data is split in sub-images which are sets of
rows and sent to the < COMP : x > Nodes. The computational core is the
iterative Macro Phase M2 of figure 6. At each iteration the quantity of water at
every pixel is computed. For this computation, information related to the nine
neighbors of the pixel, in a 3x3 square stencil, have to be known. This implies
that at each iteration of M2, < COMP : ¢ > has to exchange one row with
both < COMP :i—1> and < COMP : i+ 1 > to update the borders of its
sub-image. This behaviour is modeled by the P2P Input and Output Bindings
of M2. M1 and M3 are necessary to perform respectively the first and the last
exchange of border rows.

The performance tests with a varying number of COMP Nodes (figure 7)
have been executed on a DEM of 1000*1000 pixels (4Mbyte) with 50 iterations.

5 Conclusions and Future Work

This paper shows a new object oriented and strong structured abstraction called
SPE Chain Model that simplifies design, implementation and performance mod-
eling of parallel image processing algorithms. Moreover it presents SPE, a parallel
programming tool that implements the SPE Chain Model and shows two sample
algorithms that were implemented using SPE.

The results of this work are very positive in terms of SPEAPI usability, code
reuse and performance. SPE is quite general since many new algorithms can
be developed from scratch and already existing algorithms can easily be ported

A Parallel Programming Tool for SAR Processors 987

to it. Performance tests showed that no significant overhead is introduced by
the high level programming constructs because the performance of pre-existing
implementations can be matched very closely. Moreover SPE enables the devel-
opment of new parallel image processing algorithms that are fast and scalable.

The parallel algorithm implementations written to test SPE show that most
of the code written with SPEAPI can be automated. This fact was used to
produce a further abstraction layer based on an XML representation of the
SPEAPI structure of an algorithm. The idea is to create a RAD tool which
enables a programmer to easily design the parallel structure of an algorithm by
simply interacting with graphical widgets.

Acknowledgments

The design foundations of the platform utilized for carried out the work described
in the paper has been funded by Telespazio S.p.A. within the AST COSMO-
SkyMed project.

References

1. Connie U. Smith, LLoyd G. Williams: Performance Solutions, A Practical Guide To
Creating Responsive, Scalable Software. Addison-Wesley, Object Technology (2001)

2. J.C. Curlander, R. N. McDnough: SYNTHETIC-APERTURE RADAR-SYSTEM
AND SIGNAL PROCESSING. WILEY INTERSCIENCE, 1991

3. J. J. Mallorqui, M. Bara, A. Broquetas, M. Wis, A. Martinez, L. Nogueira, V.
Moreno: PARALLEL ALGORITHMS FOR HIGH SPEED SAR PROCESSING.

4. Yiming Pi, Hui Long, Shunji Huang: A SAR PARELLEL PROCESSING ALGO-
RITHM AND ITS IMPLEMENTATION. Department of Electronic Engineering,
University of Electronic Science and Technology of China.

5. K. Hwang ADVANCED COMPUTER ARCHITECTURE: Parallelism, Scalability,
Programmability. McGraw-Hill, Series in Computer Science (1993)

6. M. Vanneschi: The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, Vol. 28, Issue 12 (December
2002)

7. L.V. Kale, Sanjeev Krishnan: CHARM++ : A Portable Concurrent Object Oriented
System Based On C++4. Object Oriented Programming Systems, Languages and
Applications, Sept-Oct 1993. ACM Sigplan Notes, Vol. 28, No. 10, pp. 91-108.

8. Chialin Chang, Alan Sussman, Joel Saltz: CHAOS++: RUNTIME SUPPORT FOR
DISTRIBUTED DYNAMIC DATA STRUCTURES IN C++. CRPC Vol. 3 Issue 3
- Summer 1995

9. D. Caromel, F. Belloncle and Y. Roudier: The C++// system. Parallel Program-
ming Using C++, G.Wilson and P. Lu editors, MIT Press, 1996, ISBN 0-262-73118-5

	1 Introduction
	2 The SPE Chain Model
	2.1 Algorithm Design
	2.2 Algorithm Execution

	3 A Sample Implementation of SPE
	4 SPE: Two Case Studies
	5 Conclusions and Future Work
	Acknowledgments
	References

