
Parallel Inference of a 10.000-Taxon Phylogeny
with Maximum Likelihood

Alexandros Stamatakis1, Thomas Ludwig2, and Harald Meier1

1 Technische Universität München, Department of Computer Science,
Boltzmannstr. 3, D-85748 Garching b. München, Germany

{Alexandros.Stamatakis,Harald.Meier}@in.tum.de
2 Ruprecht-Karls-Universität, Department of Computer Science,

Im Neuenheimer Feld 348, D-69120 Heidelberg, Germany
thomas.ludwig@informatik.uni-heidelberg.de

Abstract. Inference of large phylogenetic trees with statistical methods
is computationally intensive. We recently introduced simple heuristics
which yield accurate trees for synthetic as well as real data and are imple-
mented in a sequential program called RAxML. We have demonstrated
that RAxML outperforms the currently fastest statistical phylogeny pro-
grams (MrBayes, PHYML) in terms of speed and likelihood values on real
data. In this paper we present a non-deterministic parallel implementa-
tion of our algorithm which in some cases yields super-linear speedups for
an analysis of 1.000 organisms on a LINUX cluster. In addition, we use
RAxML to infer a 10.000-taxon phylogenetic tree containing representa-
tive organisms from the three domains: Eukarya, Bacteria and Archaea.
Finally, we compare the sequential speed and accuracy of RAxML and
PHYML on 8 synthetic alignments comprising 4.000 sequences.

1 Introduction

Within the ParBaum project at the Technische Universität München, we work
on phylogenetic tree inference based on the maximum likelihood method by
J. Felsenstein [2]. We intend to develop novel systems and algorithms for com-
putation of huge phylogenetic trees based on sequence data from the ARB [6]
ssu rRNA (small subunit ribosomal RiboNucleic Acid) database. In a recent pa-
per [11] we implemented simple heuristics in RAxML (Randomized Axelerated
Maximum Likelihood) which accelerate the tree optimization process and yield
good results in terms of final likelihood values. In a series of experiments with
9 real data alignments containing 101 up to 1.000 organisms we demonstrate
that RAxML is the currently -to the best of our knowledge- fastest and most
accurate sequential program for real data under the HKY85 [4] model of nu-
cleotide substitution. In this paper we describe the parallel non-deterministic
implementation of RAxML and report speedup values on a LINUX cluster for
an alignment containing 1.000 organisms. Finally, we use the sequential and par-
allel version of RAxML to infer the -to the best of our knowledge- first integral
maximum likelihood-based tree containing 10.000 sequences from the three do-
mains: Eukarya, Bacteria and Archaea. This large alignment has been extracted

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 997–1004, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



998 A. Stamatakis, T. Ludwig, and H. Meier

in cooperation with biologists from ARB. The source code of the sequential and
parallel program including all alignment files and final trees is freely available
for download at wwwbode.in.tum.de/˜stamatak.

Related Work: A comparison of popular phylogeny programs using statistical
approaches such as fastDNAml [7], MrBayes [5], treepuzzle [14], and PAUP [8]
based on synthetic data may be found in [15]. MrBayes carries out bayesian
phylogenetic inference and outperforms all other phylogeny programs in terms of
speed and tree quality in this survey. More recently, Guidon et al. published their
new maximum likelihood program PHYML [3], which seems to be able to com-
pete with MrBayes. To the best of our knowledge apart from RAxML, MrBayes
and PHYML are currently the fastest and most accurate programs for phyloge-
netic tree inference. In addition, results in [3] and [11] suggest that traditional
maximum likelihood methods are still significantly faster than bayesian phyloge-
netic inference. Thus, maximum likelihood-based programs currently represent
the only statistical approach for computation of trees comprising more than 500
sequences. Another important issue is that MrBayes and PHYML have high
memory consumption compared to RAxML. For a 1.000 sequence alignment
RAxML consumed 199MB, PHYML 880MB, and MrBayes 1.195MB of main
memory. Furthermore, both MrBayes and PHYML exited with error messages
due to excessive memory requirements for the 10.000 taxon alignment on a pro-
cessor equipped with 4GB (!) of main memory. Therefore, we made an effort to
port MrBayes and PHYML to a 64-bit Itanium2 1.3GHz processor with 8GB of
memory. While MrBayes exited for unknown reasons, PHYML finally required
8.8GB of main memory in contrast to RAxML which consumed only 800MB.
In what concerns parallel computing, the parallel implementations of bayesian
methods are relatively closely coupled such that high performance computers
with expensive communication infrastructure are required [1]. For PHYML there
exists no parallel implementation yet. There also exists a popular parallel im-
plementation for fastDNAml [13] which is however based on the old sequential
algorithm from 1994.

2 Heuristics

Sequential Algorithm: The heuristics of RAxML belong to the class of algo-
rithms, which optimize the likelihood of a starting tree which already comprises
all sequences. In contrast to other programs RAxML starts by building an initial
tree with the dnapars parsimony program from Felsenstein’s PHYLIP package [9]
for two reasons: Firstly, parsimony is related to maximum likelihood under sim-
ple models of evolution such that one can expect to obtain a starting tree with a
relatively good likelihood value compared to random or neighbor joining starting
trees. Secondly, dnapars uses stepwise addition [2] for tree building and is rela-
tively fast. The stepwise addition algorithm enables the construction of distinct
starting trees by using a randomized input sequence order. Thus, RAxML can
be executed several times with different starting trees and thereby yields a set



Parallel Inference of a 10.000-Taxon Phylogeny with Maximum Likelihood 999

ST4

ST1

ST2

ST3

ST5

ST4

ST1

ST2

ST3

ST4

ST1 ST3

ST5ST5ST2

Rearranging Subtree ST5
with a rearrangement setting 
of 1

Fig. 1. Rearrangements traversing one node for subtree ST5, branches which are opti-
mized by RAxML are indicated by bold lines.

of distinct final trees which can be used to build a consensus tree. To expedite
computations, some optimization steps have been removed from dnapars.

The tree optimization process represents the second and most important
part of the heuristics. RAxML performs standard subtree rearrangements by
subsequently removing all possible subtrees from the currently best tree t_best
and re-inserting them into neighboring branches up to a specified distance of
nodes. RAxML inherited this optimization strategy from fastDNAml. One re-
arrangement step in fastDNAml consists of moving all subtrees within the cur-
rently best tree by the minimum up to the maximum distance of nodes specified
(lower/upper rearrangement setting). This process is outlined for a single sub-
tree (ST5) and a distance of 1 in Figure 1. In fastDNAml the likelihood of each
thereby generated topology is evaluated by exhaustive branch length optimiza-
tions. If one of those alternative topologies improves the likelihood t_best is
updated accordingly and once again all possible subtrees are rearranged within
t_best. This process of rearrangement steps is repeated until no better topology
is found. The rearrangement process of RAxML differs in two major points: In
fastDNAml after each insertion of a subtree into an alternative branch the branch
lengths of the entire tree are optimized. As depicted in Figure 1 with bold lines
RAxML only optimizes the three local branches adjacent to the insertion point
either analytically or by the Newton-Raphson method before computing its like-
lihood value. Since the likelihood of the tree strongly depends on the topology
per se this fast pre-scoring can be used to establish a small list of potential alter-
native trees which are very likely to improve the score of t_best. RAxML uses a
list of size 20 to store the best 20 trees obtained during one rearrangement step.
This list size proves to be a practical value in terms of speed and thoroughness
of the search. After completion of one rearrangement step the algorithm per-
forms global branch length optimizations on those 20 best topologies only. Due
to the capability to analyze significantly more alternative topologies in less time
a higher upper rearrangements setting can be used e.g. 5 or 10 which results in
significantly improved final trees. Another important change especially for the
initial optimization phase, i.e. the first 3-4 rearrangement steps, consists in the
subsequent application of topological improvements during one rearrangement
step. If during the insertion of one specific subtree into an alternative branch a
topology with a better likelihood is encountered this tree is kept immediately and
all subsequent subtree rearrangements of the current step are performed on the
improved topology. This enables rapid initial optimization of random starting



1000 A. Stamatakis, T. Ludwig, and H. Meier

trees [11]. The exact implementation of the RAxML algorithm is indicated in the
C-like pseudocode below. The algorithm is passed the user/parsimony starting
tree t, the initial rearrangement setting rStart (default: 5) and the maximum
rearrangement setting rMax (default: 21). Initially the rearrangement stepwidth
ranges from rL = 1 to rU = rStart. Fast analytical local branch length opti-
mization a is turned off when functions rearr(), which actually performs the
rearrangements, and optimizeList20() fail to yield an improved tree for the
first time. As long as the tree does not improve the lower and upper rearrange-
ment parameters rL, rU are incremented by rStart. The program terminates
when the upper rearrangement setting is greater or equal to the maximum rear-
rangement setting, i.e. rU >= rMax.

optimize(tree t, int rStart, int rMax)

{

int rL, rU;

boolean a = TRUE, impr = TRUE, stop = FALSE;

while(!stop){

if(impr){

rL = 1;

rU = rStart;

rearr(t, rL, rU, a);

}

else{

if(!a){

a = FALSE;

rL = 1;

rU = rStart;

}

else{

rL += rStart;

rU += rStart;

}

if(rU < rMax) rearr(t, rL, rU, a);

else stop = TRUE;

}

impr = optimizeList20();

}

}

Parallel Algorithm: The parallel implementation is based on a simple master-
worker architecture and consists of two phases. In phase I the master distributes
the alignment file to all worker processes if no common file system is available,
otherwise it is read directly from the file. Thereafter, each worker independently
computes a randomized parsimony starting tree and sends it to the master pro-
cess. Alternatively, it is possible to start the program directly in phase II by
specifying a tree file name in the command line. In phase II the master initiates
the optimization process for the best parsimony or specified starting tree. Due
to the high speed of a single topology evaluation, the requirement for atomicity
of a specific subtree rearrangement by function rearrangeSubtree() and the
high communication cost, it is not feasible to distribute work by single topolo-
gies as e.g. in parallel fastDNAml. Therefore, we distribute work by sending



Parallel Inference of a 10.000-Taxon Phylogeny with Maximum Likelihood 1001

the subtree ID along with the currently best topology t_best, to each worker.
The sequential and parallel implementation of RAxML on the master-side is
outlined in the pseudocode of function rearr() which actually executes subtree
rearrangements. The worker simply executes function rearrangeSubtree().

void rearr(tree t_best, int rL, int rU, boolean a)

{

boolean impr;

worker w;

for(i = 2; i < #species * 2 - 1; i++){

if(sequential){

impr = rearrangeSubtree(t_best, i, rL, rU, a);

if(impr) applySubsequent(t_best, i);

}

if(parallel){

if(w = workerAvailable) sendJob(w, t_best, i);

else putInWorkQueue(i);

}

}

if(parallel){

while(notAllTreesReceived){

w = receiveTree(w_tree);

if(likelihood(w_tree) > likelihood(t_best)) t_best = w_tree;

if(notAllTreesSent) sendJob(w, t_best, nextInWorkQueue());

}

}

}

In the sequential case rearrangements are applied to each individual subtree i.
If the tree improves through this subtree rearrangement t_best is updated ac-
cordingly, i.e. subsequent topological improvements are applied. In the parallel
case subtree IDs are stored in a work queue. Obviously, the subsequent appli-
cation of topological improvements during 1 rearrangement step (1 invocation
of rearr() is closely coupled. Therefore, we slightly modify the algorithm to
break up this dependency according to the following observation: Subsequent
improved topologies occur only during the first 3–4 rearrangement steps (ini-
tial optimization phase). Thereafter, the likelihood is improved only by function
optimizeList20(). This phase requires the largest amount of computation time,
especially with big alignments (≈ 80% of execution time). Thus, during the ini-
tial optimization phase we send only one single subtree ID i=2,...,#species
* 2 - 1 along with the currently best tree t_best to each worker for rear-
rangements. Each worker returns the best tree w_tree obtained by rearranging
subtree i withint_best to the master. If w_tree has a better likelihood than
t_best at the master, we set t_best = w_tree and distribute the updated best
tree to each worker along with the following work request. The program assumes
that the initial optimization phase IIa is terminated if no subsequent improved
topology has been detected during the last three rearrangement steps. In the final
optimization phase IIb, we reduce communication costs and increase granular-
ity by generating only 5∗#workers jobs (subtree ID spans). Finally, irrespective



1002 A. Stamatakis, T. Ludwig, and H. Meier

of the current optimization phase the best 20 topologies (or #workers topolo-
gies if #workers > 20) computed by each worker during one rearrangement
step are stored in a local worker tree list. When all #species * 2 - 3 sub-
tree rearrangements of rearr() have been completed, each worker sends its tree
list to the master. The master process merges the lists and redistributes the 20
(#workers) best tree topologies to the workers for branch length optimization,
like in parallel fastDNAml. When all topologies have been globally optimized
the master starts the next iteration of function optimize(). Due to the required
changes to the algorithm the parallel program is non-deterministic, since final
output depends on the number of workers and on the arrival sequence of results
for runs with equal numbers of workers, during the initial optimization phase
IIa. This is due to the altered implementation of the subsequent application of
topological improvements during the initial rearrangement steps which leads to
a traversal of search space on different paths.

3 Results

For our experiments we extracted alignments of 1.000 and 10.000 taxa
(1000 ARB, 10000 ARB) from the ARB database containing organisms from
the domains Eukarya, Bacteria and Archaea. We used the HKY85 model of
sequence evolution and a transition/transversion ratio of 2.0. Furthermore, we
generated 8 synthetic 4.000 taxon alignments (SIM 1,...,SIM 8) with a length of
2.000 base pairs and distinct parameter settings for comparison of PHYML and
RAxML.

Synthetic Data Tests: In Table 1 we list the topological distance to the sim-
ulated “true” tree (normalized Robinson-Foulds rate) and execution time in
seconds of PHYML and RAxML for the 8 synthetic 4.000 taxon alignments.
Details on the generation of the simulated data sets, a discussion of results, and
supplementary experiments with real-data are provided in [12].

Table 1. Topological accuracy and execution times for PHYML & RAxML on simu-
lated data

data PHYML secs RAxML secs data PHYML secs RAxML secs

SIM 1 0.065 18944 0.065 9152 SIM 5 0.028 24182 0.035 91178
SIM 2 0.039 22273 0.037 50609 SIM 6 0.027 32614 0.031 176686
SIM 3 0.033 24907 0.027 97962 SIM 7 0.027 34750 0.032 185454
SIM 4 0.030 30870 0.031 85080 SIM 8 0.026 18828 0.036 78061

Scalability Tests: We conducted parallel tests with a fixed starting tree for
1000 ARB. The program was executed on the 2.66GHz Xeon cluster on the
RRZE [10] on 1, 4, 8, 16, and 32 processors with an initial rearrangement setting
rStart of 5. To calculate the speedup values we only take into account the num-
ber of workers, since the master process hardly produces any load. In Figure 2
we plot “fair” and “normal” speedup values obtained for the experiments with



Parallel Inference of a 10.000-Taxon Phylogeny with Maximum Likelihood 1003

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

sp
ee

du
p

number of worker processes

"OPTIMAL_SPEEDUP"
"NORMAL_SPEEDUP"

"FAIR_SPEEDUP"

Fig. 2. Normal, fair, and optimal speedup values for 1000 ARB with 3,7,15, and 31
worker processes on the RRZE PC Cluster.

the 1000 ARB data set at the RRZE PC-cluster. “Fair” speedup values measure
the first point of time at which the parallel code encounters a tree with a better
likelihood than the final tree of the sequential run or vice versa. These “fair”
values better correspond to real program performance. Furthermore, we also in-
dicate “normal” speedup values which are based on the entire execution time of
the parallel program, irrespective of final likelihood values. Since we intend to
explore the effect of non-determinism on program performance we executed the
parallel code 4 times for each job-size and calculated average “normal”/“fair”
execution times and likelihood values.

Inference of a 10.000-taxon tree: The computation of the 10.000-taxon tree
was conducted using the sequential, as well as the parallel version of RAxML.
One of the advantages of RAxML consists in the randomized generation of start-
ing trees. Thus, we computed 5 distinct randomized parsimony starting trees
sequentially along with the first 3–4 rearrangement steps on a small cluster of
Intel Xeon 2.4GHz processors at our institute. This phase required an average of
112.31 CPU hours per tree. Thereafter, we executed several subsequent parallel
runs (due to job run-time limitations of 24 hrs) with the respective starting trees
on either 32 or 64 processors at the RRZE 2.66GHz Xeon-cluster. The parallel
computation required an average of 1689.6 accumulated CPU hours per tree.
The best likelihood for 10000 ARB was -949570.16 the worst -950047.78 and
the average -949867.27. PHYML reached a likelihood value of -959514.50 after
117.25 hrs on the Itanium2. Note, that the parsimony starting trees computed
with RAxML had likelihood values ranging between -954579.75 and -955308.00.
The average time required for computing those starting trees was 10.99 hrs. Since
bootstrapping is not feasible for this large data size and in order to gain some
basic information about similarities among the 5 final trees we built a consensus
tree using the extended majority rule with consense from PHYLIP (consense
constantly exited with a memory error message when given more than 5 trees).
The consensus tree has 4777 inner nodes which appear in all 5 trees, 1046 in 4,
1394 in 3, 1323 in 2, and 1153 in only 1 tree (average: 3.72).



1004 A. Stamatakis, T. Ludwig, and H. Meier

4 Conclusion

We presented an efficient parallel implementation of recently introduced heuris-
tics for phylogenetic inference under simple models of site substitution which
achieves optimal speedup values. Thus, RAxML provides a fast and practicable
approach for sequential and parallel inference of large phylogenetic trees con-
taining up to 10.000 organisms. We were able to compute the -to the best of our
knowledge- first 10.000-taxon tree with maximum likelihood using RAxML on a
medium-size commodity PC cluster. However, at this tree size, there arise new,
yet unresolved problems such as, assessment of quality and visualization which
require further investigation.

References

1. Feng, X. et al.: Parallel algorithms for Bayesian phylogenetic inference. J. Par.
Dist. Comp. (2003) 63:707–718

2. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood
Approach. J. Mol. Evol., (1981) 17:368–376,

3. Guindon, S. et al.: A Simple, Fast, and Accurate Algorithm to Estimate Large
Phylogenies by Maximum Likelihood. Syst. Biol., (2003) 52(5):696–704

4. Hasegawa,M. et al.: Dating of the human-ape splitting by a molecular clock of
mitochondrial DNA. J. Mol. Evol., (1985) 22:160–174

5. Huelsenbeck, J.P. et al.: MRBAYES: Bayesian inference of phylogenetic trees.
Bioinf., (2001) 17(8):754–755

6. Ludwig, W. et al.: ARB: A Software Environment for Sequence Data. Nucl. Acids
Res., (2004) 32(4):1363–1371

7. Olsen, G. et al.: fastdnaml: A Tool for Construction of Phylogenetic Trees of DNA
Sequences using Maximum Likelihood. Comput. Appl. Biosci., (1994) 10:41–48

8. PAUP: paup.csit.fsu.edu, visited May 2003
9. PHYLIP: evolution.genetics.washington.edu, visited Nov 2003

10. RRZE: www.rrze.uni-erlangen.de, visited Oct 2003
11. Stamatakis, A. et al.: New Fast and Accurate Heuristics for Inference of Large

Phylogenetic Trees. Proc. of IPDPS2004 (2004)
12. Stamatakis, A. et al.: RAxML-III: A Fast Program for Maximum Likelihood-based

Inference of Large Phylogenetic Trees. Bioinf. to be published
13. Stewart, C. et al.: Parallel Implementation and Performance of fastdnaml - a Pro-

gram for Maximum Likelihood Phylogenetic Inference. Proc. of SC2001 (2001)
14. Strimmer, K. et al.: Quartet Puzzling: A Maximum-Likelihood Method for Recon-

structing Tree Toologies. Mol. Biol. Evol., (1996) 13:964-969
15. Williams, T.L. et al.: An Investigation of Phylogenetic Likelihood Methods. Proc.

of BIBE’03 (2003)


	1 Introduction
	2 Heuristics
	3 Results
	4 Conclusion
	References



