
Large-Scale Deployment in P2P Experiments
Using the JXTA Distributed Framework

Gabriel Antoniu1, Luc Bougé2, Mathieu Jan1, and Sébastien Monnet3

1 IRISA/INRIA, Gabriel.Antoniu@irisa.fr
2 IRISA/ENS Cachan, Brittany Extension

3 IRISA/University of Rennes I

Abstract. The interesting properties of P2P systems (high availability despite
peer volatility, support for heterogeneous architectures, high scalability, etc.)
make them attractive for distributed computing. However, conducting large-scale
experiments with these systems arises as a major challenge. Simulation allows
only to partially model the behavior of P2P prototypes. Experiments on real
testbeds encounter serious difficulty with large-scale deployment and control
of peers. This paper shows how an optimized version of the JXTA Distributed
Framework (JDF) can help deploying, configuring and controlling P2P experi-
ments. We report on our experience in the context of our JUXMEM JXTA-based
grid data sharing service for various configurations.

1 How to Test P2P Systems at a Large Scale?

The scientific distributed systems community has recently shown a growing interest in
the Peer-to-Peer (aka P2P) model [1]. This interest is motivated by properties exhibited
by P2P systems such as high availability despite peer volatility, support of heteroge-
neous architectures and, most importantly, high scalability. For example, the KaZaA
network has shown to scale up to 4,500,000 users, an unreachable scale for distributed
systems based on the traditional client-server model.

However, the experimental validation phase remains a major challenge for designers
and implementers of P2P systems. Validating such highly-scalable systems requires the
use of large-scale experimentations, which is extremely difficult. Consider for instance
popular P2P software, like Gnutella or KaZaA: workloads of these systems are not
fully analyzed and modeled because the behavior of such systems cannot be precisely
reproduced and tested [2]. Recently, P2P systems like CFS [3], PAST [4], Ivy [5] and
OceanStore [6] based on smarter localization and routing schemes have been developed.
However, most of the experiments published for these systems exhibit results obtained
either by simulation, or by actual deployment on small testbeds, typically consisting
of less than a few tens of physical nodes [7]. Even when larger scales are reached via
emulation [8], no experimental methodology is discussed for automatic deployment and
volatility control. For instance, failures are simulated by manually stopping the peers
using the kill signal! There is thus a crucial need for infrastructures providing the
ability to test P2P systems at a large scale. Several approaches have been considered so
far.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 1038–1047, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Large-Scale Deployment in P2P Experiments Using the JXTA Distributed Framework 1039

Simulation. Simulation allows one to define a model for a P2P system, and then study
its behavior through experiments with different parameters. Simulations are often exe-
cuted on a single sequential machine. The main advantage of simulation is the repro-
ducibility of the results. However, existing simulators, like Network Simulator [9], or
SimGrid [10], need significant adaptations in order to meet the needs of a particular P2P
system. This holds even for specific P2P simulators, like ng-simulator used by Neuro-
Grid [11]. Also, the technical design of the simulated prototype may be influenced by
the functionalities provided by the simulator to be used, which may result in deviations
from reality. Last but not least, simulators model simplified versions of real environ-
ments. Further validation by alternative techniques such as emulation or experiments in
real environments is still necessary.

Emulation. Emulation allows one to configure a distributed system in order to repro-
duce the behavior of another distributed system. Tools like dummynet [12] or NIST
Net [13] allow to configure various characteristics of a network, such as the latency,
the loss rate, the number of hops between physical nodes, and sometimes the number
of physical nodes (e.g., ModelNet [14] and Emulab/Netbed [15]). Thisn way, networks
with various sizes and topologies can be emulated. However, the heterogeneity of a real
environment (in terms of physical architecture, but also of software resources) cannot
be faithfully reproduced. More importantly, deployment of P2P prototypes is essentially
left to the user: it is often overlooked, but it actually remains a major limiting factor.

Experiments on real testbeds. Real testbeds such as GridLab [16] or PlanetLab [17]
are large-scale, heterogeneous distributed environments, usually called grids. They are
made of several interconnected sites, with various resources ranging from sensors to
supercomputers, including clusters of PC. Such environments have proven helpful for
realistic testing of P2P systems. Even though experiments are not reproducible in gen-
eral on such platforms, this is a mandatory step in order to validate a prototype. Here
again, deployment and configuration control have in general to be managed by the user.
This is even more difficult than in the case of emulation, because of the much larger
physical scale.

To sum up, actually deploying and controlling a P2P system over large-scale plat-
forms arises as a central challenge in conducting realistic P2P experiments. The contri-
bution of this paper is to introduce an enhanced version of JXTA Distributed Framework
(JDF) [18] and demonstrate its use in large-scale experiments for a P2P system in a grid
computing context.

2 Deploying and Controlling Large-Scale P2P Experiments
in JXTA

In this paper, we focus on deploying and controlling P2P experiments on grid archi-
tectures. Let us stress that we do not consider the actual testing strategy, i.e., which
aspects of the behavior are monitored and how. We only address the technical infras-
tructure needed to support specific testing activities. As seen in Section 1, just deploying
a P2P prototype on such a scale is a challenging problem.

1040 G. Antoniu et al.

2.1 The Five Commandments of Large-Scale P2P Experiments

A tool aiming to facilitate large-scale P2P experiments should, at least, observe the
following 5 commandments.

Commandment C1: You shall provide the ability to easily specify the requested vir-
tual network of peers. Therefore, a specification language is required to define what
kind of application-specific peers are needed, how they are interconnected, using which
protocols, where they should be deployed, etc.

Commandment C2: You shall allow designers of P2P prototypes to trace the behavior
of their system. Therefore, the tool should allow to retrieve the outputs of each peer,
such as log files as well as result files, for off-line analysis.

Commandment C3: You shall provide the ability to efficiently deploy peers on a large
number of physical nodes. For instance, a hierarchical deployment strategy may be
useful when testing on a federation of distributed clusters.

Commandment C4: You shall provide the ability to synchronize peers between stages
of a test. Indeed, a peer should have the possibility to wait for other peers to reach a
specific state before going through the next step of a test.

Commandment C5: You shall provide the ability to control the simulation of peers’
volatility. In typical P2P configurations, some peers may have a high probability of
failure, while others may be almost stable. The tool should allow one to artificially
enforce various volatile behaviors when testing on a (hopefully stable!) testbed.

2.2 The JXTA Project

The JXTA platform (for juxtapose) [19] is an open-source framework initiated by Sun
Microsystems. JXTA specifies a set of language- and platform-independent, XML-
based protocols. It provides a rich set of building blocks for P2P interaction, which
facilitate the design and implementation of custom P2P prototypes. The basic entity is
the regular peer (called edge peer). Before being able to communicate within the JXTA
virtual network, a peer must discover other peers. In general, this is done through the use
of specialized rendezvous peers. Communication between peers is direct, except when
firewalls are in the way: in this case, relay peers must be used. Peers can be members of
one or several peer groups. A peer group consists of peers that share a common set of
interests, e.g., peers that share access to some resources. The reference implementation
of JXTA is in Java. Its current version 2.2.1 includes around 50,000 lines of code. An
implementation in C is under development.

2.3 The JXTA Distributed Framework Tool (JDF)

The purpose of JDF is to facilitate automated testing of JXTA-based systems. It provides
a generic framework allowing to easily define custom tests, deploy all the required

Large-Scale Deployment in P2P Experiments Using the JXTA Distributed Framework 1041

<network analyze-class="prototype.test.Analyze">
<profile name="Rendezvous">

<!-- peer information -->
<peer base-name="peerA" instances="1"/>

<!-- rendezvous information -->
<rdvs is-rdv="true"/>

<!-- transport information -->
<transports>

<tcp enabled="true" base-port="13000"/>
</transports>

<!-- bootstrap information -->
<bootstrap class=

"prototype.test.Rendezvous"/>
</profile>
<profile name="Edge">

<peer base-name="peerB" instances="1"/>
<rdvs is-rdv="false">

<rdv profile="Rendezvous"/>
</rdvs>
<transports>

<tcp enabled="true" base-port="13000"/>
</transports>
<bootstrap class="prototype.test.Edge"/>

</profile>
</network>

public class Peer extends JxtaBootStrapper {

public static void main(String[] args) {
Peer peer = new Peer();
peer.start(args);
peer.stop();

}

// Start the test on the local peer
public void start(String[] args) {

// Start JXTA locally
super.startJxta();
// Get a custom P2P service
p2pService = group.lookupService(...);
// Use the API of the service
p2pService.doSomething();

}

// Stop the test on the local peer
public void stop() throws Exception {

// Stop the custom P2P service
p2pService.stopApp();
// Stop JXTA locally
super.stopJxta();

}

// Store the local results
protected void updateProperties() {

super.updateProperties();
// store own results ...
setProperty(PROPERTY_TAG,

property_result);
}

}

Fig. 1. An example of required input files: a network description file defining 2 profiles (left), and
a basic Java test class inside the original JDF’s framework from Sun Microsystems (right).

resources on a distributed testbed and run the tests with various configurations of the
JXTA platform.

JDF is based on a regular Java Virtual Machine (JVM), a Bourne shell and ssh or
rsh. File transfers and remote control are handled using either ssh/scp or rsh/rcp.
JDF assumes that all the physical nodes are visible from the control node. JDF is run
through a regular shell script which launches a distributed test. This script executes a
series of elementary steps: install all the needed files; initialize the JXTA network; run
the specified test; collect the generated log and result files; analyze the overall results;
and remove the intermediate files. Additional actions are also available, such as killing
all the remaining JXTA processes. This can be very useful if the test badly failed for
some reason. Finally, JDF allows one to run a sequence of such distributed tests.

A distributed test is specified by the following elements. 1) A network descrip-
tion file defining the requested JXTA-based configuration, in terms of edge peers, ren-
dezvous peers, relay peers and their associated Java classes, and how they are linked to-
gether. This description is done through the use of profiles, as shown on the left side of
Figure 1. Two profiles are described. Profile Rendezvous specifies a rendezvous peer
configured to use TCP. Its associated Java class is protoype.test.Rendezvous.
Profile Edge specifies an edge peer. It is configured to use a peer with Profile
Rendezvous for its rendezvous peer through TCP a connection. The instance
attribute of the peer tag specifies how many peers of the profile will be launched
on a given physical node. 2) The set of Java classes describing the behavior of each

1042 G. Antoniu et al.

<profile name="RendezVous1" replicas="1"/>
<profile name="RendezVous2" replicas="1"/>
<profile name="Edge1" replicas="9"/>
<profile name="Edge2" replicas="9"/>

<profile name="RendezVous1" replicas="1"/>
<profile name="RendezVous2" replicas="1"/>
<profile name="Edge1" replicas="99"/>
<profile name="Edge2" replicas="99"/>

Fig. 2. A small JXTA network (left), and a large one (right).

peer. These Java classes must extend the framework provided by JDF, in order to eas-
ily start JXTA, stop JXTA and save the results into files, as shown on the right side of
Figure 1. These result files are collected by JDF on each physical node and sent back
to the control node to be analyzed by an additional Java class specified by the user
(prototype.test.Analyze in the example). 3) A node file containing the list of
physical nodes where to deploy and run the previously described JXTA network, as well
as the path of the JVM used on each physical node. 4) An optional file containing the
list of librairies to deploy on each physical node (a default one is provided if omitted).

3 Improving and Extending the JXTA Distributed Framework

We are currently building a prototype for a data-sharing service for the grid, based on
the JXTA platform. Therefore, we need a tool to easily deploy and control our prototype
for large-scale experiments. We describe how we improved the JDF tool, with the goal
of making it better observe the 5 commandments stated above.

3.1 Improving JDF Functionalities

Commandment C1 requires JDF to provide the ability to easily specify the requested
virtual network of peers. Developers can easily modify the number of peers hosted on
each physical node, but JDF requires that a specific profile must be explicitly defined
for each physical node, which is obviously not scalable. To facilitate testing on various
large scale configurations, we introduced the ability to specify that a single profile can
be shared by multiple physical nodes. This is specified by the replicas attribute.
Let us assume we deploy JXTA on 2 clusters of 10 nodes. Each cluster runs one JXTA
rendezvous peer, to which 9 edge peers are connected. Peers with profile Edge1 are
connected to the peer with profile Rendezvous1 and similarly for peers with pro-
files Edge2 and Rendezvous2. In the original version of JDF, this would require 2
rendezvous profiles plus 2×9 edge profiles. In contrast, our enhanced version of JDF re-
quires only 2 rendezvous profiles plus 2 edge profiles. An excerpt of the corresponding
new JDF network file is shown on the left side of Figure 2.

Now, imagine we want to run the same experiment on a larger JXTA configuration,
in which 99 edge peers are connected to a rendezvous peer in each of two 100-nodes
clusters. Thanks to the replicas attribute, it suffices to substitute 99 for 9 in the
network description file. In the original JDF, this would require to define 2 × 99 edge
profiles plus 2 rendezvous profiles!

Other enhancements mainly include improved performance for various phases of
JDF execution. For instance, only the modified files are transmitted when updating the
deployed environment. The ability to use NFS instead of scp/rcp has also been added
when deploying a distributed test on a NFS-enabled cluster.

Large-Scale Deployment in P2P Experiments Using the JXTA Distributed Framework 1043

3.2 Enhancing JDF to Interact with Local Batch Systems

An important issue when running tests on grid infrastructures regards the necessary
interaction between the deployment tool and the resource allocator available on the
testbed. Many testbeds are managed by batch systems (like PBS [20], etc.), which
dynamically allocate physical nodes to jobs scheduled on a given cluster. To observe
commandment C3 regarding efficient deployment, we have enhanced JDF to make it
interact with local batch systems via Globus, or directly with PBS.

JDF takes a static node file as input, which explicitly lists the physical nodes in-
volved. On testbeds using dynamic resource allocators, such a list cannot be provided
at the time of the job submission. Our enhanced version of JDF allows the node file
to be dynamically created once the job is actually scheduled, using the actual list of
physical nodes provided by the batch system.

This solves the problem on a single cluster. However, conducting P2P experiments
on a federation of clusters requires to co-schedule jobs across multiple batch systems.
This problem is beyond the scope of this paper, but we are confident that JDF will easily
take advantage of any forthcoming progress in this domain.

3.3 Controlling the Simulation of Volatility

One of the most significant features of P2P systems is to support a high volatility. We
think that a JDF-like tool should provide the designer with the possibility of running his
system under various volatility conditions (Commandment C5). Using a stable testbed,
the tool should provide a means to enforce node failures in a controlled way. The orig-
inal version of JDF did not consider this aspect. We have therefore developed an addi-
tional facility to generate a failure control file from various volatility-related parameters.
This file is given as an input to JDF, in order to control peer uptime. The file is stati-
cally generated before the test is launched, based on (empirical) statistical laws and on
relevant parameters (e.g., the MTBF of the network peers). At runtime, the uptime of
each peer is controlled by an additional service thread, which is started by JDF. This
thread is used to kill the peer at the specified time. This way, the volatility conditions
for a given test can be changed by simply varying the MTBF parameter. Note that using
a pre-computed failure control file also enhances the reproducibility of the test.

As of now, the failure control file is generated according to a simple statistical law,
where peer failures are independent. It would be interesting to consider dependencies
between peers: the failure of one specific peer may induce the failure of some others.
These dependencies could be associated with probabilities, for instance, the failure of
peer A induces the failure of peers B and C with a probability of 50%. This should make
it possible to simulate complex correlated failures, for instance, network partitions. An-
other direction would be to let the failure injection mechanism take into account the
peer status. The JDF failure control threads could be used to monitor the state of their
respective peers and regularly synchronize to generate correlated failures.

4 Case Study: Towards Large-Scale Experiments in JUXMEM

We are using this enhanced version of JDF to deploy and control our JXTA-based ser-
vice called JUXMEM (for Juxtaposed Memory) [21]. We believe that these results can

1044 G. Antoniu et al.

be applied to other JXTA-based services, such as the Meteor project [22]. Actually, we
were able to deploy and run Meteor’s peers using JDF without any modification in the
prototype.

4.1 The JUXMEM Project: A JXTA-Based Grid Data-Sharing Service

JUXMEM is designed as a compromise between DSM systems and P2P systems: it pro-
vides location transparency as well as data persistence in a dynamic environment. The
software architecture of the data-sharing service mirrors a hardware architecture con-
sisting of a federation of distributed clusters. The architecture is therefore hierarchical.
Its ultimate goal is to provide a data sharing service for grid computing environments,
like DIET [23].

JUXMEM consists of a network of peer groups, called cluster groups, each of which
generally corresponds to a physical cluster. All the cluster groups are enclosed by the
juxmem group, which includes all the peers who are members of the service. Each clus-
ter group consists of a set of peers which provide memory for data storage (providers).
A manager monitors the providers in a given cluster group. Any peer can use the ser-
vice to allocate, read or write to data as a client. All providers which host copies of
the same data block make up a data group, uniquely identified by an ID. Clients only
need to specify this ID to read/write a data block: the platform transparently locates it.
JUXMEM can cope with peer volatility: each data block is replicated across a certain
number of providers, according to a redundancy degree specified at allocation time. The
number of replicas is dynamically monitored and maintained through dynamic replica-
tion when necessary.

4.2 Experimenting with Various Configurations

For our experiments, we used a cluster of the Distributed ASCI Supercomputer 2 (DAS-
2) located in The Netherlands. This cluster is made of 72 nodes, managed by a PBS
scheduler. Once it is scheduled, the JDF job deploys JXTA peers over the available
cluster nodes using ssh/scp commands. Figure 3 reports the time needed to deploy,
configure and update a JUXMEM service on a variable number of physical nodes using
our optimized version of JDF.

The control node executes a sequential loop of scp/ssh commands in order to
deploy JUXMEM and its whole environment on each physical node. The total size of
all libraries for JXTA, JDF and JUXMEM is about 4 MB. As expected, the deployment
time is thus linear with the number of physical nodes, e.g., it takes 20 s for 16 nodes,
39 s for 32 nodes.

Of course, this initial deployment step is required only once per physical node,
so its cost can be “shared” by a sequence of experiments. Usually, these experiments
consist of incremental modifications to some specific libraries. In this case, only the
modified files need to be transmitted and updated on each physical node. For instance,
the size of JUXMEM’s jar file is around 100 kB. Modifying JUXMEM only requires
the transmission of this file. This is much faster, as reported by the update curve.

As seen in Section 2.3, the JDF network description file defines what types of JXTA
peers are requested, how they are interconnected, etc. The configuration step on a given

Large-Scale Deployment in P2P Experiments Using the JXTA Distributed Framework 1045

 0

 20

 40

 60

 80

 100

0 2 4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Number of providers in the cluster group

deployment (JXTA+JDF+JuxMem)

 0

 20

 40

 60

 80

 100

0 2 4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Number of providers in the cluster group

deployment (JXTA+JDF+JuxMem)
update (JuxMem)

 0

 20

 40

 60

 80

 100

0 2 4 8 16 32 64

T
im

e
(s

ec
on

ds
)

Number of providers in the cluster group

deployment (JXTA+JDF+JuxMem)
update (JuxMem)

configuration (JXTA peers)

Fig. 3. Time needed to deploy, update and con-
figure the JUXMEM service on various net-
work sizes.

 35

 40

 45

 50

 55

 60

 65

 0 5 10 15 20 25 30

N
um

be
r

of
 n

od
es

Time (min)

experimental results
theoretical curve

Fig. 4. Number of remaining peers in an exper-
iment with a MTBF set to 1 minute.

physical node consists in 2 phases: 1) based on this description, generate the specific
JXTA configuration file of each peer; 2) for each peer, update this file with its specific
list of rendezvous peers. As expected, the configuration curve shows that this takes a
time which increases slowly and linearly with the number of physical nodes.

Note that, in order to reach larger scales, each physical node can host several peers.
This is easily specified using the instances attribute of the peer tag in the JDF
network description file. For instance, we have been able to deploy 10 peers on each
node without any significant overhead, amounting to a total of 640 peers without any
additional effort.

Finally, once the configuration is complete, JUXMEM is started by invoking a JVM
for each peer. This initialization time is dependent on the number of peers launched
on each physical node. According to commandment C4, JDF should provide a way to
synchronize the initialization of JXTA peers. This could be handled by a JDF control
thread, through a mechanism similar to the failure control. This feature is still being
implemented at this time.

4.3 Experimenting with Various Volatility Conditions

The simplest way to model architecture failures is to provide a global MTBF. Our en-
hanced version of JDF allows the programmer to generate a failure schedule according
to a given MTBF. We carried out a sample experiment on 64 physical nodes with a
failure control file generated to provide a MTBF of 1 minute: the uptime in minutes for
each physical node follows an exponential distribution with a rate parameter of 1

64 . The
files automatically collected by JDF allow to check which peer went down, and when.
Figure 4 reports the results of a specific single run of 30 minutes: 25 peers were killed.
Observe that these results are somewhat biased as peers do not start exactly at the same
time, and the clocks are not perfectly well-synchronized.

5 Conclusion

Validating P2P systems at a large scale is currently a major challenge. Simulation is
nowadays most-widely used, since it leads to reproducible results. However, the signif-

1046 G. Antoniu et al.

icance of these results is limited, because simulators rely on a simplified model of re-
ality. More complex validation approaches based on emulation and execution on “real”
large-scale testbeds (e.g., grids) do not have this drawback. However, they leave the
deployment at the user’s charge, which is a major obstacle in practice.

In this paper, we state five commandments which should be observed by a deploy-
ment and control tool to successfully support large-scale P2P experiments. Our contri-
bution consists in enhancing the JXTA Distributed Framework (JDF) to fulfill some of
these requirements. This enhancement mainly includes a more precise and concise spec-
ification language describing the virtual network of JXTA peers, the ability to use vari-
ous batch systems, and also to control the volatility conditions during large-scale tests.
Some preliminary performance measurements for the basic operations are reported.

Further enhancements are needed for JDF to fully observe the five commandments.
A hierarchical, tree-like scheme for the ssh/rsh commands could be used to balance
the load of copying files from the control node to other physical nodes, along the lines
of [24]. We plan to integrate a synchronization mechanism for peers to support more
complex distributed tests. The final goal is to have a rich generic tool allowing to deploy,
configure, control and analyze large-scale distributed experiments on a federation of
clusters from a single control node. We intend to further develop this tool, in order to
use it for the validation of JUXMEM, our JXTA-based grid data sharing service. JDF
could also be very helpful for other JXTA-based services, and the approach can be
easily generalized to other P2P environments.

Acknowledgments

The authors thank Thilo Kielmann’s group from the Vrije Universiteit for making the
DAS-2 testbed available to us. We also thank Bernard Traversat, Senior Architect of
Project JXTA at Sun Microsystems, for his useful comments, as well as the reviewers,
for their suggestions.

References

1. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S.,
Xu, Z.: Peer-to-peer computing. Technical Report HPL-2002-57, HP Labs (2002) available
at http://www.hpl.hp.com/techreports/2002/HPL-2002-57.pdf.

2. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.: Measure-
ment, modeling, and analysis of a peer-to-peer file-sharing workload. In: 19th ACM Sympo-
sium on Operating Systems Principles (SOSP ’03), Bolton Landing, NY, ACM Press (2003)
314–329

3. Dabek, F., Kaashoek, F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage
with CFS. In: 18th ACM Symposium on Operating Systems Principles (SOSP ’01), Chateau
Lake Louise, Banff, Alberta, Canada (2001) 202–215

4. Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-scale, persis-
tent peer-to-peer storage utility. In: 18th ACM Symposium on Operating Systems Principles
(SOSP ’01), Chateau Lake Louise, Banff, Alberta, Canada (2001) 188–201

5. Muthitacharoen, A., Morris, R., Gil, T.M., Chen, B.: Ivy a read/write peer-to-peer file system.
In: 5th Symposium on Operating Systems Design and Implementation (OSDI ’02), Boston,
MA (2002) 31–44

Large-Scale Deployment in P2P Experiments Using the JXTA Distributed Framework 1047

6. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weath-
erspoon, H., Weimer, W., Wells, C., Zhao, B.: OceanStore: An architecture for global-scale
persistent storage. In: 9th International Conference on Architecture Support for Program-
ming Languages and Operating Systems (ASPLOS 2000). Number 2218 in Lecture Notes in
Computer Science, Cambridge, MA, Springer-Verlag (2000) 190–201

7. Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., Kubiatowicz, J.: Pond: the
OceanStore prototype. In: 2nd USENIX Conference on File and Storage Technologies
(FAST ’03), San Francisco, CA (2003) 14

8. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. Technical Report
CSD-03-1299, UC Berkeley (2003) Available at
http://oceanstore.cs.berkeley.edu/publications/papers/.

9. The ns manual (formerly ns notes and documentation).
http://www.isi.edu/nsnam/ns/doc/ns doc.pdf

10. Casanova, H.: SimGrid: A toolkit for the simulation of application scheduling. In: First
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2001),
Brisbane, Australia (2001) 430–441

11. Joseph, S.: P2P metadata search layers. In: Second International Workshop on Agents
and Peer-to-Peer Computing (AP2PC 2003). Number 2872 in Lecture Notes in Computer
Science, Bologna, Italy, Springer-Verlag (2003)

12. Rizzo, L.: Dummynet and forward error correction. In: 1998 USENIX Annual Technical
Conference, New Orleans, LA (1998) 129–137

13. Carson, M., Santay, D.: NIST Net - a Linux-based network emulation tool. (2004) To appear
in special issue of Computer Communication Review.

14. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., Becker, D.: Scal-
ability and accuracy in a large-scale network emulator. In: 5th Symposium on Operating
Systems Design and Implementation (OSDI ’02), Boston, MA (2002) 271–284

15. White, B., Lepreau, J., Stoller, L., Ricci, R., Newbold, S.G.M., Hibler, M., Barb, C., Joglekar,
A.: An integrated experimental environment for distributed systems and networks. In: 5th
Symposium on Operating Systems Design and Implementation (OSDI ’02), Boston, MA
(2002) 255–270

16. Allen, G., Davis, K., Dolkas, K.N., Doulamis, N.D., Goodale, T., Kielmann, T., Merzky, A.,
Nabrzyski, J., Pukacki, J., Radke, T., Russell, M., Seidel, E., Shalf, J., Taylor, I.: Enabling
applications on the grid: A GridLab overview. International Journal of High Performance
Computing Applications 17 (2003) 449–466

17. PlanetLab: an open community testbed for planetary-scale services. http://www.
planet-lab.org/pubs/2003-04-24-IntelITPlanetLab.pdf

18. JXTA Distributed Framework. http://jdf.jxta.org/
19. The JXTA project. http://www.jxta.org/
20. The Portable Batch System. http://www.openpbs.org/
21. Antoniu, G., Bougé, L., Jan, M.: JuxMem: Weaving together the P2P and DSM paradigms

to enable a Grid Data-sharing Service. Kluwer Journal of Supercomputing (2004) To appear.
Preliminary electronic version available at URL
http://www.inria.fr/rrrt/rr-5082.html.

22. Project Meteor. http://meteor.jxta.org/
23. The DIET project: Distributed interactive engineering toolbox.

http://graal.ens-lyon.fr/∼diet/
24. Martin, C., Richard, O.: Parallel launcher for clusters of PC. In Imperial College Press, L.,

ed.: Parallel Computing (ParCo 2001), Naples, Italy, World Scientific (2001) 473–480

	1 How to Test P2P Systems at a Large Scale?
	2 Deploying and Controlling Large-Scale P2P Experiments in JXTA
	2.1 The Five Commandments of Large-Scale P2P Experiments
	2.2 The JXTA Project
	2.3 The JXTA Distributed Framework Tool (JDF)

	3 Improving and Extending the JXTA Distributed Framework
	3.1 Improving JDF Functionalities
	3.2 Enhancing JDF to Interact with Local Batch Systems
	3.3 Controlling the Simulation of Volatility

	4 Case Study: Towards Large-Scale Experiments in JUXMEM
	4.1 The JUXMEM Project: A JXTA-Based Grid Data-Sharing Service
	4.2 Experimenting with Various Configurations
	4.3 Experimenting with Various Volatility Conditions

	5 Conclusion
	Acknowledgments
	References

