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Abstract. High scalability in Peer-to-Peer (P2P) systems has been achieved with
the emergence of the networks based on Distributed Hash Table (DHT). Most of
the DHTs can be regarded as exponential networks. Their network size evolves
exponentially while the minimal distance between two nodes as well as the rout-
ing table size, i.e., the degree, at each node evolve linearly or remain constant. In
this paper we present a model to better characterize most of the current logarithmic-
degree DHTs. We express them in terms of absolute and relative exponential
structured networks. In relative exponential networks, such as Chord, where all
nodes are reachable in at most H hops, the number of paths of length inferior or
equal to H between two nodes grows exponentially with the network size. We
propose the Tango approach to reduce this redundancy and to improve other
properties such as reducing the lookup path length. We analyze Tango and show
that it is more scalable than the current logarithmic-degree DHTs. Given its scala-
bility and structuring flexibility, we chose Tango to be the algorithm underlying
our P2P middleware.

1 Introduction

Over the past few years, Peer-to-Peer (P2P) networks have become an important re-
search topic due to their interesting potentials such as self-organization, decentraliza-
tion and scalability. A P2P network is principally characterized by its structuring policy
and the lookup protocol employed. Not long after the emergence of the first popular
P2P networks, Napster and Gnutella, it was realized that scalability in these networks
was an important issue. A better alternative are the P2P networks based on DHT (Dis-
tributed Hash Table). These networks are self-organized, fully distributed and highly
scalable. Furthermore, given that each node has a well defined routing table, the lookup
for any node/item can be accomplished within a relatively small number of hops. As the
network size increases exponentially, the maximum lookup length as well as the routing
table size at each node (i.e., the degree) increase linearly like in Chord [1], Pastry [2]
and Tapestry [3], or even remain constant like in Koorde [4] and DH [5].
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The DHT based P2P networks are also called structured networks, since they fol-
low a well defined structure. A closer look to their structure allowed us to notice that
most of the logarithmic-degree DHTs fall into two main categories, depending on the
nodes’ view of the network (we defer the definition of node’s view to Section 2). We
call them absolute and relative structured exponential networks. A first contribution of
this paper is the description of a model to better characterize the exponential structured
networks as absolute and relative. Related to this work is the research described in [6]
where a model based on the concept of k-ary search is proposed for reasoning about
DHT networks. Their model addresses only relative structured exponential networks,
while ours is more general, addressing the absolute networks, too.

Our model allowed us to observe that in the relative exponential structured networks
the fingers of a node are not totally exploited. Hereinafter we denote the “fingers” of a
node n to be the single-hop connections of n, and hence representing the entries in the
routing table of node n. In Section 3 we propose an approach, that we called Tango,
to structure the relative exponential networks for increasing their scalability. Tango
reduces the redundancy in the multiplicity of paths between two nodes of a relative
exponential network and, as such, it reduces the path length between the nodes. The
Tango approach is the second and the main contribution of this paper. In Section 4 we
compare Tango with DKS [7], and with the DH constant-degree network.

2 Structured Exponential Network

A structured exponential network is a network built incrementally using well-defined
steps. It is composed of nodes linked together via directed edges according to structur-
ing rules, and characterized by an exponential factor k which is the number of instances
of network Neti used to define the subsequent network Neti+1 . The network Net1 is
the initial network composed of one node. At step i, network Neti is built by using k
instances of network Neti−1 linked to one another.

We identify two methods for connecting all k instances of Neti−1 at the ith step : ab-
solute and the relative connections. They lead to absolute and relative structured expo-
nential network, respectively. We illustrate both methods for a network of size 64, built
in four steps, and parameterized by an exponential factor k = 4. Each node is identified
both numerically by using a unique identifier ranging from 0 to 63, and graphically by
using k shapes (i.e., light square, light circle, bold square and bold circle). The shape
organizes the nodes within the network whereas the size of the shape determines the
network building step. Small shapes stand for instances of Net1 , medium shapes for
instances of Net2 , and large shapes for instances of Net3 . The network instance of
Net4 regroups the four network instances of Net3 . However, for simplicity, Net4 is
not marked in the figures. In order to distinguish the fingers of the reference node from
the other nodes, we represent them as non-gray numbers whereas the other nodes are
in gray. Moreover, we introduce the ⊕ and the � operators. In a network of size S, we
define the operators as m ⊕ n = (m + n) mod S, and m� n = (m− n + S) mod S.

An absolute structured exponential network is represented in Figure 1 (left). In such
a network, each node has the same view of the network. For instance, all nodes see
that nodes ranging from 0 to 15 are sitting in the large light square. That is, if a node
sees that a node m is sitting in a given shape then all the nodes see that m is sitting
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Fig. 1. (left) Absolute structured exponential network of size 64 with k = 4. (right) View of a
node n in a relative structured exponential network of size 64 with k = 4.

in that given shape. In such a network, at the ith step, the k − 1 fingers of a node n
are pointing to the k − 1 other instances of Neti−1 . Moreover, it does not matter to
which node inside each Neti−1 n points to. For instance, in the network represented in
Figure 1 (left), the fingers of node 21 at the third step can be any instance of nodes a,b,c
where a ∈ [16 . . . 19], b ∈ [24 . . . 27], and c ∈ [28 . . .31].

A relative structured exponential network differs from an absolute one by the fact
that the view of the network owned by a particular node is relative to its position within
the network. For instance, nodes sitting in the large light square are found at distance
dist from the reference node, with −21 ≤ dist ≤ −6. Moreover, in a relative expo-
nential network, a node n has to point precisely to the nodes occupying relatively the
same positions in the k − 1 other instances of Neti−1 . For instance, as represented in
Figure 1(right), the fingers of node n at the third step are n � 16, n ⊕ 16, n ⊕ 32.

Most logarithmic-degree DHT-based P2P networks can be expressed either in terms
of an absolute or in terms of a relative structured exponential network. For instance, Pas-
try and Tapestry can be seen as instances of the absolute structured exponential network
by instantiating the employed alphabet to the shapes used in Figure 1. On the other hand,
Chord and DKS can be seen as instances of the relative structured exponential network.

This model allows us to state that networks built with the relative and the absolute
approaches scale at the same rate. Indeed, let Si be the size of network Neti and Hi be
the maximum number of hops to reach any node in Neti . Then, for both structures we
have Si = k ∗ Si−1 with S1 = 1, Hi = i− 1, and a number of (k − 1) ∗ (i− 1) fingers
at each node. Moreover, this model allows us to state that if at the ith step, a node n
points to node m, then in an absolute network, the networks reachable in at most i hops
by n and m, using all the fingers established in the first i steps, are identical while they
differ in a relative network. This difference is at the foundation of the Tango definition
and its propention to increase finger utilization.
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Fig. 2. (left) Network building pattern in Tango where k = 5. (right) Paths from node 0 to all
the other nodes in a Chord network of size 8 and in a Tango network of size 13.

3 Tango: A Novel Approach
for Reducing Unexploited Redundancy

In a relative exponential network we can identify two types of redundancy. The first
one results from the commutative property of the addition operation and from the fact
that each node owns, relatively, the same fingers. For example, in Chord, node 0 can
reach node 6 via node 4 (6=0+4+2) and also via node 2 (6=0+2+4). The second type of
redundancy results from the underutilization of fingers.

To have a clear explanation, we introduce the notion of positive and negative regions
of a given node n. A node m is found in the positive region of node n iff m�n < n�m,
otherwise, node m is found in the negative region of node n.

We propose Tango, an approach to address the second type of redundancy, and
thus increasing network scalability by taking into account that the networks reachable
in at most i hops by n and its fingers added at step i, using all the fingers established in
the first i steps, are different in a relative network. Indeed, the region covered in at most
i hops via the farthest finger added in the positive (resp. negative) region at step i and
the region covered in at most i hops via the closest finger added in the positive (resp.
negative) region at step i + 1 overlap partially. For example, the regions reachable in at
most 3 hops by node 21 via node 29 (i.e., from 24 to 39) and via node 37 (i.e., from 32 to
47) overlap. Let a valid path between two nodes in a network instance Neti be any path
between these nodes whose length is at most i− 1 hops. In a relative network, all these
overlap regions increase exponentially the number of valid paths between two nodes.
Moreover, the cumulated size of the overlap, i.e., the amount of unexploited redundancy
in an instance of Neti grows exponentially with i.

3.1 Tango Definition

In order to prevent overlapping, the region comprised between the farthest finger added
in the positive (resp. negative) region at step i and the closest finger added in the positive
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(resp. negative) region at step i + 1 has to be equal to the size of the network instance
Neti . This improvement is graphically expressed in Figure 2 (left) for a network char-
acterized by k = 5. One can notice that Neti+1 is composed of 5 blocks. There are 4
instances of Neti and 1 instance of Extended Neti , which is the network reachable by
the reference node in at most i hops by using the fingers defined in Neti .

Let k+
i and k−

i be the number of fingers added in the positive and, respectively, the
negative regions of a node at step i. Hence, knowing that at each construction step i
there are k − 1 fingers added to a node, we obtain k = k+

i + k−
i + 1.

Let d+
i,j (resp. d−i,j) be the distance at which the jth positive (resp. negative) finger

of the ith step should be placed. Let S+
i (resp. S−

i ) be the size of the positive (resp.
negative) region of a reference node at step i. Equations 1 establish the size growth and
the fingers positioning in Tango. One can note that for k−

i = 0, the Tango network
corresponds to an improved version of Chord, and DKS with an arity k. The reader can
refer to Section 4 for a comparison between Chord, DKS and Tango.

d±2,j = j j ∈ [1 . . . k±
2 ] S±

1 = 0

d±i,j = d±i,j−1 ± Si−1 j ∈ [1 . . . k±
i ], i > 2 S±

i = S±
i−1 + d±

i,k±
i

i > 1

d±i,0 = d±
i−1,k±

i−1
i > 2 Si = S+

i + S−
i + 1 i > 0

(1)

3.2 Key-Based Routing

The purpose of key-based routing is to route a message tagged with key Key to the
node responsible of Key . Let p+

n (resp. p−n ) be the first node encountered in the positive
(resp. negative) region of n. The responsibility of a node n is defined in Equation 2.

Beside the node responsibility, there is the finger responsibility defining the node to
which a message should be forwarded to. In Tango we split the finger responsibility
of a given finger F in negative and positive sides1. Than, let the focused network be
an instance Netl and let Sp±i,j (resp. Sn±

i,j) be the sizes of the positive (resp. negative)
finger responsibility as defined in Equations 3 and 4. The finger responsibility R±

i,j of
finger located at position P±

i,j related to the distance d±i,j are defined in Equation 5.
Hence, by using its finger Fi,j , a node can cover the region Ri,j in at most i − 1 hops.

Rn =
[
n �

(⌊
k+
2

k − 1

⌋
∗ (n � p−n � 1)

)
. . .

(⌈
k−
2

k − 1

⌉
∗ (p+

n � n � 1)
)
⊕ n

]
(2)

Sp−i,j = S−
i ; Sp+

l,k+
l

= S+
i ; Sp+

i,k+
i

= S+
i+1 ; Sp+

i,j = S+
i (3)

Sn+
i,j = S+

i ; Sn−
l,k−

l

= S−
i ; Sn−

i,k−
i

= S−
i+1 ; Sn−

i,j = S−
i (4)

R±
i,j =

[
P±

i,j � Sn±
i,j . . . P±

i,j ⊕ Sp±i,j
]

(5)

1 The denomination of Tango comes from its ability to have positive routing steps followed by
negative routing steps and vice versa.
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3.3 Tango in a Sparse and Dynamic Network

In a sparse network, the position of a finger F (i.e., P ) of a node n may correspond to
a missing node. In that case, n points to the node responsible of P . Hence, the nodes
are playing the finger role of the missing nodes laying within their responsibility. In
order to preserve the lookup efficiency, each node adapts its routing table in order to
reach the same part of the network in the same number of hops as it would have been
done by each missing nodes within its responsibility. That is why in Tango, we define
the finger position P (n) and the finger node F (n) of a node n as in Equation 6, where
j ∈ [1 . . . k−

i ], g ∈ [1 . . . k+
i ] and i ∈ [1..l].

P−
i,j(n) = Rn.inf � d−i,j F−

i,j(n) = m s.t. P−
i,j(n) ∈ Rm

P+
i,g(n) = Rn.sup⊕ d+

i,g F+
i,g(n) = m s.t. P+

i,g(n) ∈ Rm
(6)

To deal with the dynamics in a Tango network, the algorithms of join, fault toler-
ance and correction on use defined in DKS can be applied directly to Tango. Moreover,
due to the symmetry provided by the Tango networks featured with k+ = k−, the cor-
rection on use can be made more efficient. For more details, the reader can refer to [8].

4 Analysis

In this section we shortly compare Tango with DKS, and with the Distance Halving
constant-degree network. For more details, the reader can refer to [8].

4.1 Tango vs. DKS

DKS generalizes Chord to allow a tradeoff between the maximum lookup length in
the network (i.e., the diameter) and the size of the routing table at each node (i.e., the
degree). The structure of DKS characterized by k = 2 is the same as the one of Chord.
Tango also supports the tradeoff between the diameter and the degree. Moreover, the
network covered with Tango is much larger than the network covered with DKS and
Chord, while keeping the same network diameter and the same degree at a node. That
is, in Tango the exponential factor is bigger than in Chord and DKS. From Equation 1,
one can deduce the size of the network covered with Tango at a step i > 2 together
with the roots (i.e., z1 and z2) of its characteristic equation. For a step i sufficiently high,
the exponential factor in Tango can be approximated to z1, where k < z1 < k + 1, and
thus we obtain Si ≈ z1

i−1. Although, the search cost in Tango is O(logN ), for apprx.
the same network size the highest search cost in Tango is 75% of the one in Chord.

Si = (k + 1) ∗ Si−1 − Si−2 z1 = k+1+
√

(k+1)2−4

2 , z2 = k+1−
√

(k+1)2−4

2
(7)

Si = ki−1 +
i−2∑
j=1

ki−j−2 ∗ (d+

j,k+
j

+ d−
j,k−

j

) i > 2 (8)

In order to compare the size growth in Tango and DKS, one can define the network
size covered by Tango at the ith construction step as in Equation 8. Note that the first
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Fig. 3. (left) Ratio between the network sizes covered by Tango and DKS, with the same number
of fingers at different construction steps. (right) Network size [N] and average routing distance [D]
of Tango, DH and Chord, with respect to different values of node degree.

term of the equation corresponds to the network size covered by DKS at the ith step,
i.e., ki−1. The second term, which also increases exponentially, corresponds to the dif-
ference between the two network sizes; it actually represents the cumulated unexploited
redundancy in DKS. In Figure 2 (right) we present an example of how Tango covers
a larger network than Chord (DKS, k = 2) even at the very early building steps. With a
routing table of size 3, a node in Chord can cover a network of size 8 in 3 hops, whereas
in Tango, in 3 hops, a node can cover a larger network, i.e., of size 13.

To better understand the relation between Tango and DKS, in Figure 3 (left) we
plotted the ratio between the network sizes covered in Tango and DKS at each con-
struction step ranging from 1 to 32, for five different values of k. One can note that for a
given k, the ratio between the network sizes is growing exponentially at each step. It is
also interesting to note that the growth ratio of the ratio decreases as k increases. How-
ever, since increasing k leads to increasing the resource consuming and the maintenance
cost, it is likely that relative small values of k will be employed.

4.2 Tango vs. Constant-Degree Networks

A constant-degree network is a network whose size can increase exponentially, while
the node degree remains fixed and the diameter increases logarithmically. Some exam-
ples are those based on the de Bruijn graph, such as Koorde and DH. In our analysis we
were interested in the average routing distance and the network size for Tango (k = 3)
and DH with respect to different node degrees. We also plot them for Chord to have a
third party reference. To compute the average routing distance for DH we used the µd

formula for de Bruijn graphs given in [9] and doubled it to achieve load balancing, as
suggested in [5]. As shown in Figure 3 (right), for the same node degrees (inferior to
34), and almost the same network size, Tango provides lower values for the average
routing distance than DH.



Improving the Scalability of Logarithmic-Degree DHT-Based Peer-to-Peer Networks 1067

5 Conclusion

First, in this paper we presented a model to better characterize the structure of the cur-
rent logarithmic-degree P2P exponential structured networks, such as Tapestry, Pastry,
Chord and DKS, in terms of absolute and relative exponential structured networks.

On the other hand, we proposed the Tango approach to better structure the relative
exponential networks to increase their scalability by exploiting the redundancy in the
lookup paths. We showed that Tango is more scalable than the current logarithmic-
based DHTs. We analyzed the structure of Tango with respect to the one of DKS and,
implicitly, to the one of Chord. Particularly, we observed that, for small values of the
exponential factor k, Tango is much more scalable than DKS (and Chord), while for
big values of k the scalability of the two networks is more comparable. However, since
increasing k leads to increasing the resource consuming and the maintenance cost, it is
likely that relative small values of k will be employed. We also analyzed Tango with
respect to DH, a constant-degree network. We observed that, for networks with relative
large node degrees, the average routing distance in Tango and DH are comparable.

Given its structuring flexibility and its scalability potential, we chose Tango to be
the algorithm underlying our recently released P2P middleware [10], and demo appli-
cations: PostIt and Matisse [10]. As future work, we plan to address the redundancy in
Tango resulting from the commutative property of the finger addition operation.
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