
Generation of Simple Analytical Models for

Message Passing Applications?

German Rodriguez, Rosa M. Badia, and Jesús Labarta

CEPBA-IBM Research Institute,
Technical University of Catalonia (UPC),

Campus Nord, Mòdul D6, Jordi Girona, 1-3, 08034 Barcelona, Spain

{grodrigu@ac.upc.es}, {rosab,jesus}@cepba.upc.es

Abstract. We present a methodology which allows to derive accurate
and simple models which are able to describe the performance of parallel
applications without looking at the source code. A trace is obtained and
linear models are derived by fitting the outcome of a set of simulations
varying the influential parameters, such as: processor speed, network
latency or bandwidth.
The simplicity of the linear models allows for natural derivation of inter-
pretations for the corresponding factors of the model, allowing for both
prediction accuracy and interpretability to be maintained.
We explain how we plan to extend this approach to extrapolate from
these models to be apply it to predict for processor counts different to
the one of the given traces.

1 Motivation and Goal

Obtaining performance models of parallel applications is extremely useful for a
broad range of purposes: determining if a platform achieves its expected perfor-
mance, identification of the source of performance problems[16], scheduling, and
many others.

Models based on simulations are used to explore the parameter space design,
but are time consuming and lack the abstraction and possibility of interpretation
that analytic models provide [8–10].

In this work we want present, extend and validate a methodology that we
are developing [18] to extend the analysis capabilities of the tools DIMEMAS[1]
and PARAVER[2] developed at CEPBA.

We want to derive simple analytical models including the number of pro-
cessors as a parameter starting from post-mortem trace-files of the application
under study. The simplest model presents non-linearities and we show how we
treat them being methodological while gaining insight of how the application is
affected by the architectural parameters.

? This work has been partially funded by the Ministry of Science and Technology of
Spain under CICYT TIC2001-0995-CO2-01 and by a Ministry of Education of Spain
FPU grant.

Rodriguez, G.; Badia, R.M.; Labarta, J. Generation of simple analytical models for message passing applications. A: International
European Conference on Parallel Processing. "Euro-Par 2004: Parallel Processing: 10th International Euro-Par Conference: Pisa,
Italy, August 31- September 3, 2004: proceedings". Springer, 2004, p. 183-188. ISBN 3-540-22924-8. The final authenticated
version is available online at https://doi.org/10.1007/978-3-540-27866-5_23.

2 Methodology

We apply the following methodology: for each application that we want to
analyze, we obtain traces from its real execution varying the number of pro-
cessors. The dynamic instrumentation technology of MPIDtrace[11] (based on
DPCL[12]) allows us to obtain traces of production binaries without needing
access to its source code. This traces contain information of communication re-
quests of all processes as well as the CPU demands between those requests. The
usefulness of MPIDtrace has been shown in [13–15]. Other previously proposed
methods needed the source code and knowledge of the program structure to be
able to instrument the application [17].

This traces feed the DIMEMAS[1] simulator. DIMEMAS implements a sim-
ple abstract model of a parallel platform in which the MPI software layers are
taken into account. It allows to simulate for varying Latencies, Bandwidths, and
CPU ratios (that models the CPU performance ratio between the source and tar-
get machine). Given a trace for a particular number of processors, DIMEMAS is
not able to perform a simulation of the trace under a different processor count.

STORM[3] performs DIMEMAS simulations of a particular trace file, ran-
domly varying the influential architectural parameters.

From these results, we fit a linear model from these data of the elapsed
time of the application against the architectural parameters. The coefficients
characterize the application.

2.1 Brief Review of Previous Results and Methodology

We have already addressed the problem of finding an accurate model, simple
and at the same time general enough, to explain and predict the behavior of the
same set of programs [18], using a formula like: TP(L,BW) = αP+βP ·L+ γP

BW
1.

We obtained the αP, βP, γP through linear fitting of DIMEMAS simulations
varying L and BW . P was not a parameter.

A further step was the unification of these formulas to a single one, including
the processor count P as one additional parameter in the form of:

T (P,L,BW) = α(P) + β(P) · L +
γ(P)

BW
(1)

α(P) represents the time of the critical path, β(P) the number of non-
overlapped latencies and γ(P) the number of bytes exchanged between processors
not overlapped with computation. By knowing these functions of P we would be
able to predict for a different processor count of that of the original traces.

It would be simple to model α(P) as: α(P) = α0 + α1

P
(following Amdahl’s

law). However, in a parallel program, this is not necessarily true. We observe a
non-linearity on P for the “critical path”(α(P)) when the distribution of com-
putation improves locality and therefore results in a better memory hierarchy
performance.

1 L stands for Latency, BW , Bandwidth, and P for the number of processors.

2.2 Decoupling Non-linearities

Such a non-linearity is found in the α(P) parameter for the NAS BT bench-
mark. Locality plays and important role, and executions for increasing processor
counts account for smaller total amounts of computation2, as would be expected
following Amdahl’s law.

We use the term Locality Factor to quantitatively express the difference
between the expected amount of work using Amdahl’s law, and the real one.
This Locality Factor is computed as the relation between the total CPU time
for all processors of the trace for the minimum processor count (reference P)
and the actual amount of time accounted for a particular processor count P :

LocalityFactor(P) = TotalCPUtime(P)
TotalCPUtime(Preference)

.

The Locality factors of the NAS BT executions do not vary linearly with the
number of processors. Amdahl’s law would predict a constant behavior (Locality
factor being always 1). However the BT total sequential execution times decrease
as much as 55% from 4 to 49 processors (non-linearly).

In order to apply our methodology, this non-linear effect should be decoupled,
and therefore we propose the following formula:

T (P,L,BW) = (α′(P)) · LocalityFactor(P) + β′(P) · L +
γ′(P)

BW
, (2)

Where α′, β′ and γ′ are obtained having previously corrected the effect of in-
creased locality. We simply scale all the CPU bursts of the simulations by setting
the DIMEMAS CPU efficiency scaling parameter, CPU ratio, to the value of the
Locality factor. The same methodology explained in the two first paragraphs of
Subsect. 2.1 is applied to the trace of the execution of the application for each

processor count P with the corresponding CPU efficiency scaling factor applied
in the simulation to obtain the α′

P.
Given these α′

P we then apply a linear regression (this time with no non-
linearities involved) to obtain an estimate of α′(P) of the form:

α′(P) = α′

0 +
α′

1

P
(3)

We checked (Sect. 3) that β′

P and γ′

P are statistically identical to βP and γP

and independent of the Locality factor for a sensible range of correcting factors.
We expect to find linear behaviors in β(P) and γ(P), as they roughly repre-

sent the non–overlapped latencies and communication bandwidth (see [18]).
The model obtained predicts with very high accuracy the DIMEMAS sim-

ulations obtained with the Locality Factor correction. However, this model is
not predicting the real application, but an ideal one where the memory effects
are not taken into account. To model the real application, the corresponding
α′(P) parameter should be again multiplied by the Locality factor correspond-
ing to the processor count to obtain what would be the real α(P) (critical path’s
time). We checked this approach in Sect. 3 and we show that for the applications
considered, this process does not change the communication pattern.

2 in DIMEMAS terms, Total CPU time: sum of all CPU bursts of all processors.

3 Example of Methodology use

To validate this methodology we have used IBM SP2 traces, from 4 to 49 pro-
cessors, of the following applications: NAS BT[4], Sweep3D[6], RNAfold[5] and
POP[7]. We show how we applied the process and show the relative errors ob-
tained.

The last column of Table 1 shows the αP factors obtained through regression
of the set of simulations with no Locality Factor correction; the second column
shows the α′(P) parameters3 obtained using (4), in which its coefficients where
obtained by fitting the data obtained of a set of simulations using the corre-
sponding Locality Factor (shown in the third column), and therefore decoupling
the non-linearity. Finally, the correctness of the model is validated by recon-
struction of the αP parameter as the product α′(P) · LocalityFactor(P), shown
in the fourth column. In this table, the α′(P) factors are calculated as:

α′(P) = α′

0 +
α′

1

P
(4)

where α′

0 and α′

1 were calculated by doing a linear regression on the α′

P obtained
having previously applied the Locality Factor correction. The α′

P followed a linear
behavior on the inverse of the number of processors, whereas the original αP,
with non-corrected Locality Factors, did not.

Table 1. Going back to the αP factors from the linear model built using the α′

P

parameters.

NAS BT

Procs. α′(P) Loc.Factor(P) α′(P) · Loc.Factor(P) αP

4 14.748 1.000 14.748 14.718
9 6.589 0.986 6.496 6.585

16 3.734 0.900 3.361 3.351
25 2.412 0.672 1.620 1.598
36 1.694 0.575 0.974 0.964
49 1.261 0.553 0.697 0.699

In Table 1 we show that we could eliminate the non-linear behavior of the
αP parameter through a simple transformation, and then go back to the original
one using a function LocalityFactor(P) for which we understand its meaning
and could derive a model. But we also have to show that this transformation
does not affect the other factors: βP and γP.

Table 2 shows that the βP parameters are independent from the scaling of
the CPU bursts according to the LocalityFactor(P).

Given these facts, it was possible to use the α′(P), β′(P) and γ′(P) to go
back to (2), recovering what the α(P), β(P) and γ(P) parameters would be and
validate the model and the explained transformations. Table 3 shows the values
obtained for the linear models used to fit the three factors.

3 i.e., the α̂′(P) parameters.

Table 2. βP and γP factors against β′

P and γ′

P factors

NAS BT

P βP β′

P γP γ′

P

9 320.37 321.96 0.46 0.44
25 527.92 521.80 0.50 0.55
36 675.39 677.55 0.27 0.23

Table 3. Parameters: N.S. means “Non Significant” (regression analysis)

Benchmark α′

0 α′

1 β′

0 β′

1 γ′

0 γ′

1

NAS 0.062 58.743 200.814 12.240 0.453 N.S.
POP 1.366 337.444 14478.395 N.S. 2.739 N.S.

SWEEP 2.258 105.007 1850.302 21.488 N.S. 0.569
RNAfold 0.411 91.778 3528.737 N.S. 0.202 N.S.

We validated our results with more than 200 randomly selected bandwidths
and latencies for each of the traces for varying P . In Table 4 we show the Maxi-
mum Relative Errors using (2) (where the parameters were obtained simulating
with the corrected Locality Factors). These relative errors compare the predic-
tion of model (2) and the actual times calculated by DIMEMAS.

Table 4. Maximum Relative Errors of validation against equation 2.

Processors NAS POP SWEEP RNAfold

4 0.24% 0.35% — —
8 — — 0.47% 0.05%
9 1.39% 0.93% — —

12 — — — 0.43%
16 0.27% 2.48% 1.15% —
25 1.37% 2.83% — —
28 — — — 0.88%
32 — — 3.50% —
36 1.13% 9.09% — —
49 0.28% — 5.16% —

4 Conclusions and Future Work

We have analyzed the possibility of easily deriving simple models that accurately
characterize the behavior of a set of representative parallel benchmarks, from
which one of them is a real application: POP[7].

The methodology under development allows to understand the underlying
factors that influence the performance of a program. We analyzed the meaning
of the parameters in a previous work [18] and are extending that analysis.

We have overcome the difficulties imposed by non-linearities and we are now
testing this methodology to extrapolate the results to any number of processors.

We plan to extrapolate the α(P) model using similar techniques to the ones
in [15] (PMACS), as well as determining the regions of linearity in a more or
less automatic way.

References

1. DIMEMAS: http://www.cepba.upc.es/dimemas/
2. PARAVER: http://www.cepba.upc.es/paraver/
3. STORM: a tool for stochastic analysis, http://www.easi.de/storm
4. Bailey, D., Harris, T., Saphir, W., van der Wijngaart, R., Woo, A., Yarrow, M.:

“The NAS Parallel Benchmarks 2.0”. The International Journal of Supercomputer
Applications, 1995.

5. Hofacker, I.L., Fontana, W., Bonhoeffer, L. S., Tacker, M., Schuster, P.: “Vienna
RNA Package”, http://www.tbi.univie.ac.at/ ivo/RNA, October 2002.

6. “The ASCI sweep3d Benchmark Code”,
http://www.llnl.gov/asci benchmarks/asci/limited/sweep3d/asci sweep3d.html

7. “Parallel Ocean Program”: http://climate.lanl.gov/Models/POP/
8. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K. E., Santos, E., von

Eicken, T.: “LogP: Towards a Realistic Model of Parallel Computation”. Proc. of
the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, May 1993.

9. Mathis, M. M., Kerbyson, D. J., Hoisie, A.: “A Performance Model of non-
Deterministic Particle Transport on Large-Scale Systems”. Proc. Int. Conf. on Com-
putational Science (ICCS), Melbourne, Australia, Jun 2003.

10. Jacquet, A., Janot, V., Leung, C., Gao, G. R., Govindarajan, R., Sterling, T.
L.: “An Executable Analytical Performance Evaluation Approach for Early Perfor-
mance Prediction”. Proc. of IPDPS 2003.

11. MPIDtrace manual, http://www.cepba.upc.es/dimemas/manual i.htm

12. DeRose, L.: “The dynamic probe class library: an infrastructure for developing
instrumentation for performance tools”. International Parallel and Distributed Pro-
cessing Symposium, April 2001.

13. Girona, S., Labarta, J.: “Sensitivity of Performance Prediction of Message Passing
Programs”. International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’99), Monte Carlo Resort, Las Vegas, Nevada,
USA, July 1999.

14. Girona, S., Labarta, J., Badia, R. M.: “Validation of Dimemas communication
model for MPI collective operations”. EuroPVM/MPI’2000, Balatonfüred, Lake
Balaton,Hungary, September 2000.

15. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R. M., Purkayastha,
A.: “A framework for performance modeling and prediction”. SC 2002.

16. Crovella, M. E., LeBlanc, J. L.: “The Search for Lost Cycles: A New Approach
to Parallel Program Performance Evaluation (1993)”. Tech. Rep. 479, Computer
Science Department, University of Rochester, Dec., 1993.

17. Mehra, P., Schulbach, C., Yan, J.C.: “A comparison of two model-based
performance-prediction techniques for message-passing parallel programs”. Sigmet-
rics’94, pgs. 181-190, May 1994.

18. Badia, R. M., Rodriguez G., Labarta, J.: “Deriving analytical models from a limited
number of runs”. ParCo 2003 Proceedings

