
Distributed Shared Memory:
To Relax or Not to Relax?

Vadim Iosevich and Assaf Schuster

Technion–Israel Institute of Technology
Computer Science Dept.

{vadim ds,assaf}@cs.technion.ac.il

Abstract. Choosing a memory consistency model is one of the main de-
cisions in designing a Distributed Shared Memory (DSM) system. While
Sequential Consistency (SC) provides a simple and intuitive program-
ming model, relaxed consistency models allow memory accesses to be
parallelized, improving runtime performance. In this article we compare
the performance of two multithreaded memory coherence protocols. The
first protocol implements Home-based Lazy Release Consistency (HLRC)
memory semantics and the second one implements SC semantics using
a MultiView (MV) memory mapping technique. This technique en-
ables fine-grain access to shared memory while using the virtual memory
hardware to track memory accesses. We perform an “apple-to-apple”
comparison on the same testbed environment and benchmark suite, and
investigate the effectiveness and scalability of both these protocols.

1 Introduction

A Distributed Shared Memory (DSM) system provides the distributed applica-
tion with an abstraction of the shared address space in such a way that all data
stored in this space is shared between all nodes in the cluster. Generally, each
node uses its local virtual memory as a cache of the shared memory, often iden-
tifying the presence of data in the local cache by utilizing the virtual memory
hardware. If the data is located on a remote node, the DSM system is responsi-
ble for fetching it, while maintaining the correctness of the shared memory. This
concept was first proposed by Li and implemented in the first software DSM sys-
tem, named IVY [1]. In order to keep the cache in a coherent state, the shared
data is grained to atomic segments, like lines in a real cache. These segments are
called coherency units.

A formal specification of how memory operations appear to execute to the
programmer is called a memory consistency model. Since the introduction of
Lamport’s now-canonical sequential consistency (SC) model [2], various consis-
tency models have been proposed by researchers [3, 4]. The idea of these models
is to postpone the propagation of coherence information until synchronization
points are reached. There are two types of synchronization operations, ACQUIRE
and RELEASE, used respectively to obtain and yield exclusive access to shared
data.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 198–205, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Distributed Shared Memory: To Relax or Not to Relax? 199

Lazy Release Consistency (LRC) [4] is a refinement of the Release Consis-
tency (RC) model [3]. The RC model requires that shared memory accesses be
performed globally upon a RELEASE operation only. The idea of LRC is to make
those accesses visible only to the processor that acquires a lock rather than
perform all operations globally. False-sharing is alleviated by allowing different
processes to access the same page simultaneously if these operations are not
synchronized. A home-based implementation of LRC (HLRC) was proposed by
Iftode [5]. In this implementation each shared page has an assigned home node.
This home node always hosts the most updated contents of the page, which can
then be fetched by a non-home node that needs an updated version.

2 Contribution

This work compares the runtime performance of two memory coherence proto-
cols: a multithreaded implementation of the HLRC model and an efficient mul-
tithreaded implementation of the SC model that uses a MultiView [6] memory
mapping technique. Both coherence protocols are implemented within
the same DSM system, where all code that is not consistency-specific
is used by both protocols. We use the same benchmark suite, where all ap-
plications produce the same output for both tested protocols. We show that an
efficient implementation of the SC memory model can match the performance of
the HLRC coherency protocol for the majority of tested applications. We analyze
the impact of multithreading on DSM performance and show that the majority
of tested applications improve their performance in the multithreaded mode.

3 Implementation

Our implementation is based on a Millipede DSM system [6]. Millipede im-
plements a technique called MultiView, which allows an efficient implementa-
tion of SC and fine-grain access to the shared memory. MultiView can com-
pletely eliminate false sharing, treating each shared variable as a coherency unit.
If false sharing is to be eliminated, the DSM system must be aware of the size
of each shared variable, and this information is naturally supplied by an appli-
cation via allocation requests. That means that each variable must be allocated
separately, and generally requires only a small change to an application source
code. A small size of a coherency unit can result in a large number of faults. An
application’s data set can be allocated by chunks of few variables as a trade-
off between false sharing and data prefetching. Generally, there is an optimal
allocation pattern for each application that results in a minimal execution time.

Niv and Shuster [7] proposed a mechanism that automatically changes the
shared memory granularity during runtime. This mechanism, called the dynamic
granularity was proven to be a successful technique for improving MultiView’s
performance. It is based on a history of shared memory accesses and aggregates
variables in larger coherency units when the application accesses them coarsely.

200 V. Iosevich and A. Schuster

When different nodes start to request different parts of this large coherency unit,
it is disassembled to separate variables.

Our complementary work [8] details the efficient implementation of the HLRC
memory coherence protocol that supports preemptive multithreading. Previous
HLRC implementations proposed non-preemptive multithreading [9] or creating
a process for each CPU in an SMP node [10, 11]. The only HLRC implementation
that supports preemptive threads is mentioned by Antoniu and Bougé in [12].

The protocol is implemented over the Virtual Interface Architecture (VIA)
[13] – a standard architecture for high-speed networking. The implementation
details are not provided here for lack of space. To make a real “apple-to-apple”
comparison, we port a previous version of Millipede to this communication
layer in order to evaluate both protocols on the common substrate.

4 Performance Evaluation

In this section we compare and analyze the performance of two multithreaded
shared memory coherence protocols: SC implemented with MultiView (further
denoted as SC/MV) and HLRC. Our testbed environment is a cluster of twelve
Compaq Professional Workstations AP550. Each node is an SMP PC with two
733MHZ Pentium-III processors, a 512KB L2 cache, a 512MB physical memory
and a 32-bit/33MHz PCI bus. All nodes run the Win2000 operating system. The
cluster is interconnected by the ServerNet-II [14] VIA-based network.

We also investigate the effect of chunk allocation in order to estimate the
potential of the SC/MV technique and discover the best static granularity for
the particular application. In addition, we try to estimate how the dynamic
granularity change can boost the performance of the MultiView technique.
Our system does not support the dynamic granularity protocol, but we try to
estimate the runtime performance for the dynamic granularity on the basis of
results presented in [7]. We estimate the performance gain achieved with dy-
namic granularity versus fixed granularity and the presented results are only an
approximation.

4.1 Benchmark Application Suite

Our benchmark suite consists of two microbenchmarks, NBodyW and NBody;
eight applications from the SPLASH-2 [15] benchmark suite (Barnes, Volrend,
LU, Water-nsq, Water-sp, FFT, Radix and Ocean); and TSP and SOR from the
TreadMarks [16] benchmark applications.

NBodyW is a microbenchmark that imitates a kernel of n-body applications.
The program operates with a large set of 64-byte bodies and performs three
phases as follows: (1) Each of the P application’s threads reads the entire set
of bodies. (2) Each of the P application’s threads processes and updates 1/P
of the bodies. The processing of a body is simulated by a constant-length busy
loop. (3) A single thread updates all the bodies (sequential phase). NBody is
a shortened modification of NBodyW that contains only the first two phases.
Hence, this application contains one coarse phase and one fine phase.

Distributed Shared Memory: To Relax or Not to Relax? 201

Table 1. Benchmark characteristics. B stands for barriers, L stands for locks.

Application Input Shared Sharing Synch Allocation
data set memory granularity pattern

Water-nsq 8000 molecules 5.35MB a molecule (672B) B, L fine

Water-sp 8000 molecules 10.15MB a molecule (680B) B, L fine

LU 3072 × 3072 72.10MB block (coarse) B coarse

FFT 220 numbers 48.25MB a row segment B coarse

TSP A graph of 32 cities 27.86MB a tour (276B) L fine

SOR 2066 × 10240 80.73MB a row (coarse) B coarse

Barnes 32768 bodies 41.21MB body fields (4–32B) B, L fine

Radix 10240000 keys 82.73MB an integer (4B) B, L coarse

Volrend a file “head.den” 29.34MB a 4 × 4 box (4B) B, L fine

Ocean a 514 × 514 grid 94.75MB grid point (8B) B, L coarse

NBody 32768 bodies 2.00MB a body (64B) B fine

NBodyW 32768 bodies 2.00MB a body (64B) B fine

A detailed description of the other benchmarks can be found in related papers
and is not provided here for lack of space. Table 1 summarizes input data sets
and memory sharing characteristics of all tested benchmarks.

4.2 Performance Analysis and Comparison

Fig. 1 summarizes the speedups obtained for all applications, with one thread
running on each node. We can divide the tested benchmarks into three groups,
according to their performance with each of the two memory coherence protocols
mentioned above.

The first group contains the majority of tested applications, for which the
SC/MV protocol matches HLRC’s performance, or for which the gap between
the two can be eliminated by using the proper granularity level or dynamic
granularity protocol. These applications are: NBody, NBodyW, Volrend, TSP,
Water-nsq, Water-sp, Radix and FFT.

The second group comprises three applications: SOR, LU and Ocean, which
achieve a better speedup with the SC/MV protocol. HLRC’s poor performance
for these applications is due to the excess coherence operations that are required
by the consistency model but not justified in this specific case. Generally, these
operations are performed on barriers, when all threads are notified about modi-
fications performed by all other threads. Nevertheless, each thread processes its
own part of a data set and is not interested in the modifications of other threads.

To the third group we ascribe Barnes only. For this application, the HLRC
coherence protocol significantly outperforms the SC/MV, and this gap cannot
be bridged by optimal or dynamic chunking levels. Dynamic granularity does
improve the SC/MV protocol’s performance, but it is still a long way from that
of HLRC.

Investigating the impact of multithreading on DSM performance, we found
that while generally beneficial, multithreading can also be detrimental in some

202 V. Iosevich and A. Schuster

0

1

2

3

4

5

6

7

8

9

10

11

12

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

N

B
od

yW

 N

B
od

y

 V
ol

re
nd

T
S

P

W
at

er
−

ns
q

 W
at

er
−

sp

 R

ad
ix

F
F

T

S
O

R

 L
U

 O

ce
an

B

ar
ne

s

Speedup comparison

sp
ee

du
p

HLRC
SC − fine or coarse granularity (depending on application)
SC − best granularity
SC − dynamic granularity (estimated)

��
��
��
��

Fig. 1. Speedup comparison for all tested applications. The speedup is measured as
the relation between the serial execution time and the minimal execution time on a
12-node cluster, where each node runs only one application thread.

cases. First of all, there are sequential phases performed by a single thread (as
in NBodyW, Volrend and LU) or phases where the same task is performed by
all threads regardless of their location, as in the first phase of NBody(W). Fur-
thermore, multithreading does not always provide computation-communication
overlap and can lead to increased contention in the shared memory protocol and
communication layer. Consequently, multithreading affects all applications to a
different extent, as can be observed from Fig. 2. In summary, the HLRC proto-
col benefits from multithreading, with an average performance improvement of
35.5%. The SC/MV protocol without optimized allocation improves its perfor-
mance by 21.9% on average. With the optimized allocation pattern, the SC/MV
protocol gains 30.7%.

5 Conclusions

The coherency state information that must be kept by the SC/MV protocol is
quite simple. Only the presence of all page replicas must be tracked. In con-
trast, the HLRC protocol is much more memory-consuming and cumbersome.
Tracking the causality relation between memory accesses requires complex data
structures that must be referenced by different threads. This requires a very
accurate mutual exclusion mechanism to keep the state data valid.

If data has to be fetched from a remote node as the result of a fault, this will
always take one round trip in HLRC – a request message is sent to a home node
that answers with the requested content. In the SC/MV protocol, however, this
operation generally takes three messages. The first message is sent to a manager
(if the faulting node is not the manager itself), and the second is forwarded by
the manager to the page owner (if the manager is not the owner itself), which,
in turn, replies to a requester. This results in a more costly fault in the SC/MV
implementation. It should be noted that although chunk allocation increases the

Distributed Shared Memory: To Relax or Not to Relax? 203

−40

−30

−20

−10

0

10

20

30

40

50

60

70

80

90

100

N

B
od

yW

 N

B
od

y

 V
ol

re
nd

T
S

P

W
at

er
−

ns
q

 W
at

er
−

sp

 R

ad
ix

F
F

T

S
O

R

 L
U

 O

ce
an

B

ar
ne

s

Comparative speedup gain from multithreading

sp
ee

du
p

ga
in

, %

HLRC
SC − fine or coarse granularity (depending on the application)
SC − best granularity

Fig. 2. Speedup gain from multithreading. The presented measure is the difference
in the speedup achieved on a 12-node cluster with each node running one vs. two
application threads.

average cost of a fault (due to the increased portion of data that must be sent
to the requester), the overall number of faults is reduced, alleviating page fault
overhead.

We found that the average speedup of the HLRC protocol is 5.97, while the
average speedup of the SC/MV protocol with non-optimized allocation is 4.5.
This means that HLRC exhibits a 32.7% performance advantage over a non-
optimized SC/MV. Considering the best possible allocation pattern for each
application, we raise the average speedup of the SC/MV protocol to 5.6, which
is very close to the average HLRC speedup. This decreases the HLRC perfor-
mance advantage to only 6.6%. Taking into account the speedup achieved by the
SC/MV protocol if the granularity is changed dynamically at runtime, we get
an average SC/MV speedup of 6.2.

6 Related Works

Dwarkadas et al. [17] compared the Shasta [18] (SC) and Cashmere [19] (RC)
DSM systems, both of which were tuned to run on a cluster of four-CPU 400 MHz
multiprocessors connected via a Memory Channel network. The authors con-
cluded that for the eight applications that were written and tuned for hardware
DSM systems, Shasta performed 6.1 times better than Cashmere. For the five
programs that were written or tuned for page-based DSM, Cashmere performed
1.3 times better than Shasta. When all the tested applications were optimized
separately for both coherence protocols, Cashmere performed 1.15 times better
than Shasta. Both of the aforementioned protocols differ from those investigated
in our study, and we ran our DSM on nodes with more powerful CPUs. Never-
theless, the results confirm our conclusion that the SC protocol, if implemented
efficiently, performs no worse than relaxed memory consistency models. In addi-
tion, Shasta and Cashmere are two completely different DSM systems: they differ

204 V. Iosevich and A. Schuster

not only in coherence protocols but also in implementing services such as syn-
chronization primitives, communication, and the tracking of memory accesses.
We implement both coherence protocols within the same DSM system where all
code that is not consistency-specific is used identically by both protocols.

Additional research was conducted by Zhou et al. [20] on a noncommodity
hardware system that supports access control at custom granularity. This allows
the use of a uniform access control mechanism for both fine-grain and coarse-
grain protocols. The authors tried to find the best combination of granularity
and consistency protocols for different classes of applications. Three consistency
protocols with four sizes of coherence granularity were tested: SC, single-writer
LRC, and HLRC. The results show that no single combination of protocol and
granularity performs best for all the applications. A combination of the SC proto-
col and fine granularity works well with 7 of the 12 applications. The combination
of a HLRC protocol and page granularity works well with 8 of the 12 applica-
tions. It should be noted that the testbed environment used in [20] consisted
of 66MHz processors, while our processors are an order of magnitude faster. In
contrast to this study, we use standard hardware to implement DSM protocols.

Keleher [21] compared single- and multiple-writer versions of the LRC pro-
tocol, and the SC protocol, all implemented in the CVM software DSM system.
Keleher found that the multiple writer LRC protocol performs an average of
34% better than the SC protocol. While not specified, the SC protocol used
in this study is probably a page-based protocol and therefore cannot perform
well for applications that use fine-grain data sharing. Nevertheless, it performs
well for coarse-grain applications like FFT and LU. The results show that the
SC protocol performs like multiple-writer LRC for FFT and outperforms it for
LU. This confirms our results for these applications. The use of slow (66MHz)
processors make it difficult to compare this study to our research.

References

1. Li, K.: Ivy: A shared virtual memory system for parallel computing. In: Proc. of
the Int’l Conf. on Parallel Processing (ICPP’88). Volume 2. (1988) 94–101

2. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers 28 (1979) 690–691

3. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P.B., Gupta, A., Hennessy,
J.L.: Memory consistency and event ordering in scalable shared-memory multipro-
cessors. In: 25 Years ISCA: Retrospectives and Reprints. (1998) 376–387

4. Keleher, P., Cox, A.L., Zwaenepoel, W.: Lazy release consistency for software
distributed shared memory. In: Proc. of the 19th Annual Int’l. Symp. on Computer
Architecture (ISCA’92). (1992) 13–21

5. Iftode, L.: Home-based shared virtual memory (thesis). Technical Report TR-583-
98, Princeton University, Computer Science Department (1998)

6. Itzkovitz, A., Schuster, A.: MultiView and Millipage–fine-grain sharing in page-
based DSMs. In: Proc. of the 3rd Symp. on Operating Systems Design and Imple-
mentation (OSDI-99), Berkeley, CA (1999) 215–228

7. Niv, N., Schuster, A.: Transparent adaptation of sharing granularity in MultiView-
based DSM systems. Software Practice and Experience 31 (2001) 1439–1459

Distributed Shared Memory: To Relax or Not to Relax? 205

8. Iosevich, V., Schuster, A.: Multithreaded home-based lazy release consistency
over VIA. In: Proc. of the 18th Int’l. Parallel and Distributed Processing Symp.
(IPDPS’04). (2004)

9. Rangarajan, M., Divakaran, S., Nguyen, T.D., Iftode, L.: Multi-threaded home-
based LRC distributed shared memory. In: The 8th Workshop of Scalable Shared
Memory Multiprocessors (held in conjunction with ISCA). (1999)

10. Stets, R., Dwarkadas, S., Hardavellas, N., Hunt, G.C., Kontothanassis, L.I.,
Parthasarathy, S., Scott, M.L.: Cashmere-2L: Software coherent shared memory
on a clustered remote-write network. In: Symp. on Operating Systems Principles.
(1997) 170–183

11. Bilas, A.: Improving the Performance of Shared Virtual Memory on System Area
Networks. PhD thesis, Dept. of Computer Science, Princeton University (1998)

12. Antoniu, G., Bougé, L.: DSM-PM2: A portable implementation platform for multi-
threaded DSM consistency protocols. In: Proc. 6th Int’l. Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS ’01). (2001)

13. Compaq, Intel and Microsoft Corporations: Virtual Interface Architecture Speci-
fication. Version 1.0. http://www.viarch.org (1997)

14. Heirich, A., Garcia, D., Knowles, M., Horst, R.: ServerNet-II: A reliable intercon-
nect for scalable high performance cluster computing. Technical report, Compaq
Computer Corporation, Tandem Division (1998)

15. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs:
Characterization and methodological considerations. In: Proc. of the 22th Int’l
Symp. on Computer Architecture. (1995) 24–36

16. Keleher, P., Dwarkadas, S., Cox, A.L., Zwaenepoel, W.: Treadmarks: Distributed
shared memory on standard workstations and operating systems. In: Proc. of the
Winter 1994 USENIX Conf. (1994) 115–131

17. Dwarkadas, S., Gharachorloo, K., Kontothanassis, L., Scales, D.J., Scott, M.L.,
Stets, R.: Comparative evaluation of fine- and coarse-grain approaches for software
distributed shared memory. In: Proc. of the 5th IEEE Symp. on High-Performance
Computer Architecture (HPCA-5). (1999) 260–269

18. Scales, D.J., Gharachorloo, K., Thekkath, C.A.: Shasta: A low overhead, software-
only approach for supporting fine-grain shared memory. In: Proc. of the 7th Symp.
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOSVII). (1996) 174–185

19. Kontothanassis, L.I., Hunt, G., Stets, R., Hardavellas, N., Cierniak, M.,
Parthasarathy, S., Meira, Jr., W., Dwarkadas, S., Scott, M.L.: VM-based shared
memory on low-latency, remote-memory-access networks. In: Proc. of the 24th
Annual Int’l. Symp. on Computer Architecture (ISCA’97). (1997) 157–169

20. Zhou, Y., Iftode, L., Li, K., Singh, J.P., Toonen, B.R., Schoinas, I., Hill, M.D.,
Wood, D.A.: Relaxed consistency and coherence granularity in DSM systems: A
performance evaluation. In: Proc. of the Sixth ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (PPOPP’97). (1997) 193–205

21. Keleher, P.: The relative importance of concurrent writers and weak consistency
models. In: Proc. of the 16th Int’l. Conf. on Distributed Computing Systems
(ICDCS-16). (1996) 91–98

	1 Introduction
	2 Contribution
	3 Implementation
	4 Performance Evaluation
	4.1 Benchmark Application Suite
	4.2 Performance Analysis and Comparison

	5 Conclusions
	6 Related Works
	References

