
M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 238–245, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Scheduling of MPI Applications: Self-co-scheduling

Gladys Utrera, Julita Corbalán, and Jesús Labarta

Departament d’Arquitectura de Computadors (DAC)
Universitat Politècnica de Catalunya (UPC)
{gutrera,juli,jesus}@ac.upc.es

Abstract. Scheduling parallel jobs has been an active investigation area. The
scheduler has to deal with heterogeneous workloads and try to obtain through-
puts and response times such that ensures good performance.
We propose a Dynamic Space-Sharing Scheduling technique, the Self Co-
Scheduling, based on the combination of the best benefits from Static Space
Sharing and Co-Scheduling. A job is allocated a processors partition where its
number of processes can be greater than the number of processors. As MPI jobs
aren’t malleable, we make the job contend with itself for the use of processors
applying Co-Scheduling.
We demonstrate that our Self Co-Scheduling technique has better performance
and stability than other Time Sharing Scheduling techniques, especially when
working with high communication degree workloads, heavy loaded machines
and high multiprogramming level.

1 Introduction

An operating system must give support to different kind of parallel applications. The
scheduler has to take into account the particular characteristics of each architecture
and jobs to exploit the maximum performance of the overall system.

In our work, we will focus on shared memory multiprocessors (SMMs) and on
Message Passing Interface [6] (MPI) jobs. This library is worldwide used, even on
SMMs, due to its performance portability on other platforms, compared to other pro-
gramming models such as threads and OpenMP. This is especially important for fu-
ture infrastructures such as information power grids, where resource availability dy-
namically changes for submitted jobs. Our objective will be to obtain the best per-
formance in service time and throughput.

In this study, we try to demonstrate that it is possible to combine Co-Scheduling
(CS) policies with Space Sharing policies to build a Dynamic Space-Sharing schedul-
ing policy, which we call the Self Co-Scheduling policy (SCS), in a dynamic envi-
ronment where the number of processors allocated to a job may be modified during
job execution without loss of performance. We implement, evaluate and analyze sev-
eral schemes that exploit the low-level process management with the goal of minimis-
ing the loss of performance generated when the number of total processes in the sys-
tem is greater than the number of processors, as MPI jobs aren’t malleable1.

1 Malleable jobs are the ones that can modify their number of processes at execution time.

Scheduling of MPI Applications: Self-co-scheduling 239

After that we select the two policies that work best and re-evaluate them in a more
realistic environment varying the machine load and communication degree. We show
that jobs obtain better responses times and stability when share resources with them-
selves, as under SCS, than when share resources with other jobs, as under the Time
Sharing techniques. At processor level, we have observed that is better to free the
processor as soon as the process detects it has no useful work to do and select the next
process to run in the local queue, in a Round Robin manner.

The rest of the paper is organized as follows. In Section 2 is the related work. Then
in Section 3 follows scheduling strategies evaluated and in Section 4 the execution
framework and the performance results. Finally in Section 5 the conclusions and fu-
ture work.

2 Related Work

There are three main approaches that share processors among jobs: Time Sharing
(TS), Space Sharing (SS), and Gang Scheduling or its relaxed version, Co-Scheduling
(CS).

When having more processes than processors, TS algorithms multiplex the use of
processors among jobs in time. For parallel jobs the performance is degraded because
of lack of synchronization and the context switching effect.

SS reduces the context switching effect, by partitioning the set of available proces-
sors among the jobs. These approaches have demonstrated to perform well on malle-
able jobs such as the OpenMP by adjusting the number of processes of a job to the
number of available processors, which is not the case for MPI jobs.

From the combination of TS and SS, comes the CS, classified in the literature as:
Explicit Scheduling (ES), Local Scheduling (LS), and Dynamic or Implicit Co-
Scheduling (DCS). In [8] there is an interesting classification of CS techniques based
on the combinations of two components in the interaction between the scheduler and
the communication mechanism: what to do when waiting for a message and what to
do on message arrival.

The ES proposed by Feitelson and Jette [4] based on a static global list, execution
order of the jobs and simultaneous context switching over processors, suffers from
processor fragmentation, context switching overhead and poor scalability.

In the LS [5] the scheduling decisions are made independently at each local node.
Here the performance of fine grain communication jobs is deteriorated because there
isn’t any synchronization at all.

DCS [1] is an intermediate approximation where decisions are made locally but
based on global communication events such as message arriving and round trip mes-
sage time. This information is combined in several ways, resulting in different sched-
ulers. The Periodic Boost (PB) [8] is a kind of DCS where some monitor process
manipulates the process priorities based on the unconsumed message queue. In most
of these cases the MPI library was modified.

With respect to coordination between the queuing system and the processor sched-
uler there is an interesting work in [3]. In [7] they determine at execution time the
grain of the job. They classify an individual process as ‘frustrated’ if the scheduling
policy actually applied doesn’t satisfy its communication requirements.

240 G. Utrera, J. Corbalán, and J. Labarta

3 Scheduling Policies Evaluated

We have implemented our SCS, the FIFO as a Static Space Sharing and other existing
TS techniques. In Table 1 are summarized all the scheduling policies evaluated.

Let’s notice that under TS, there may be from all to none of the processes from a
job executing at the same time. But under SCS there will be always at least a fixed
minimum number of processes executing at the same time.

3.1 Self-co-scheduling Technique

In order to combine SS and CS techniques we concentrate on three decisions: how
many processors assign to a job, the process allocation in each partition and the
scheduling of each processor local queue. These decisions are taken at low-level
process management.

The number of processors assigned to a job is closely related to its number of proc-
esses and the multiprogramming level (MPL)2. This number is calculated by the equa-
tion (1):

Initial_allocation = Number Processes / MPL

Re_allocation = Initial_allocation + (No. Free Processors / No. Running Appls)
(1)

Once the Queuing System launches a job, it starts execution if there are enough
free processors that satisfy the Initial_allocation number given by (1). Otherwise it
must wait until other job finishes execution and free processors were recalculated.
During execution, if there aren’t any queued jobs, then free processors are redistrib-
uted in an equipartition way, between the jobs in the system, using the Re_allocation
number (1). As soon as a new job arrives if there aren’t enough free processors for it,
all the jobs are shrinked to their Initial_allocation number of processors.

A user-level scheduler does the process mapping to the set of assigned processors
in an ordered way using the internal MPI identification. As the number of processors
assigned to a job could be less than its number of processes, there may be a process
local queue at each processor, which we schedule by applying the CS techniques.

When executing a MPI blocking function, if the process cannot continue execution
it may blocks immediately (BI) or do Spin Blocking (SB) [1]. After blocking a Con-
text Switching routine is invoked. This decides which process of the local queue fol-
lows executing: the next in a Round Robin (RR) fashion or the process that has the
greater number of unconsumed messages (Msg).

So from these variations arise the following combinations of SCS: (1) With BI and
RR; (2) With BI and Msg; (3) With SB and RR; (4) With SB and Msg.

3.2 Time Sharing Techniques

The TS techniques evaluated were: the scheduler of the IRIX 6.5 operating system as
a pure TS scheduler and because is the native scheduler of the SMM where we are

2 We call MPL to the number of processes subscribed to a processor.

Scheduling of MPI Applications: Self-co-scheduling 241

working on, an implementation of the Periodic Boost (PB) [8] for being the one that
demonstrated the best performance in [8], and some variations to other CS techniques
based on the actions taken on the message waiting and arrival.

The CS variations arise at processor level management. We have implemented the
analogous combinations already described in Section 3.1 for SCS.

Table 1. Configuration for the scheduling policies evaluated.

 How to wait for a message

Next to run BI SB

RR SCS, CS SCS, CS

Msg SCS, CS SCS, CS

4 Evaluations

Firstly we present the architectural characteristics of the platform used. After that
follows a brief description of the execution environment, the workloads and finally
the performance results.

The metrics used were the slowdowns of the response times with respect to FIFO
execution, which means jobs executing in a first come first served order with a SSS
scheduling policy. In the rest of the paper we will refer to this policy as FIFO.

Our implementation was done on a shared memory multiprocessor, the SGI Origin
2000 [9]. It has 64 processors, organized in 32 nodes with two 250 MHZ MIPS
R10000 processors each. The machine has 16 Gb of main memory of nodes (512 Mb
per node) with a page size of 16 Kbytes. Each pair of nodes is connected to a network
router. The operating system is IRIX 6.5 with its native MPI library with no modifica-
tions

4.1 Execution Environment

The Launcher is the user-level queuing system used in our execution environment. It
performs a first come first served policy from a list of jobs belonging to a predefined
workload. Once the Launcher starts executing a queued job, it enters under the control
of a user-level scheduler, the CPUM, which implements the scheduling policies. It
decides how many processors allocate to a job, where it will reside, the processors
local queue scheduling and controls the maximum MPL for all the applications in the
system, which is given as a parameter. The communication between the CPUM and
the jobs is done through shared memory by control structures.

The CPUM wakes up periodically and at each quantum time expiration examines if
new jobs have arrived to the system or have finished execution, updates the control
structures and if necessary depending on the scheduling policy, redistributes proces-
sors. For a more detailed description about the CPUM mechanism refer to [10].

242 G. Utrera, J. Corbalán, and J. Labarta

4.2 Applications and Workloads

To drive the performance evaluations we consider jobs from the MPI NAS Bench-
marks suite [2] and the Sweep3D.

We have observed in initial experiments, that as we increment the MPL, the per-
formance degrades due to the execution time dedicated to perform MPI blocking
functions, like global synchronizations, barriers or blocking receives. In Table 2 and 3
we show the workloads constructed with the applications classified as high (hi), me-
dium (me) and low (lo) comm. degree according to their MPI percentage execution
time. The workloads were sized to run for 5 minutes.

Table 2. Workloads for the first part of the evaluation.

Workload w1 w2 w3 w4
Applications lu, cg, mg cg, mg, ft mg, ft mg, ft, ep

Comm. Degree hi, hi, hi hi, hi, me hi, me hi, me, lo

Table 3. Workloads for the second part of the evaluation.

Workload High comm Low comm
Applications bt, cg, mg, sweep3D sweep3D, ep

Comm. Degree hi, hi, hi, hi hi, lo

4.3 Performance Results for the Scheduling Policies Evaluation

The evaluations were run on 64 processors, using the workloads from Table 2,
MPL=4, with all the jobs having 64 processes each to avoid fragmentation, and the
same arrival time. In Fig. 1 we present the execution times of the workloads evaluated
under the different policies.

As we can the IRIX scheduler and the PB show the worst performance especially
in high comm. degree workloads with slowdowns of 10 and 7 respectively.

The Spin Times evaluated were 1200 microsecs. when the next to run was by Msg
and 800 microsecs. where the next to run was by RR. They were chosen in such a way
they minimize the responses times. A Spin Time equal to zero, that is BI seemed the
best option. This can be deduced from [1], as we have latency null because we are
working on a SMM.

About the best slowdowns, we have SCS with 0.76 for high comm. and 0.58 for
low comm. degree workloads. CS achieves 0.86 for high comm. and 0.72 for low
comm. degree.

An interesting observation is that under SCS, the jobs execute always in the
“same” environment, no matter the workload they are in, for being a kind of SS pol-
icy. But, under CS, applications become more sensible with respect to the environ-
ment, because they must share processors between them. We measure the impact with
the standard deviation coefficient (CV) of the execution times of the applications
between workloads. For example the MG has under the SCS techniques a CV of 5.5,
while under CS techniques it can be greater than 26.9. This means that SCS show a
greater stability than CS. This is important because an application, under SCS, will
have a more predictable behavior.

Scheduling of MPI Applications: Self-co-scheduling 243

MPL= 4 on 64 processors

0

100

200

300

400

500

w1 w2 w3 w4

Workloads

E
xe

c
T

im
e

(s
ec

s)
FIFO

Irix

PB

CS SB Msg

CS BI Msg

CS SB RR

CS BI RR

SCS SB Msg

SCS BI Msg

SCS SB RR

SCS BI RR

 2192 1685 991 1051 567 680

Fig. 1. Evaluation of different scheduling policies under the workloads from Table 2.

4.4 Comparing CS and SCS Varying Workload and System Characteristics

In the previous section we showed that SCS with BI and RR dominated the other
strategies evaluated. In this section we show the results from re-evaluating it and
comparing with CS. The workloads used are from Table 3 with different number of
processes (between 32 and 60) and arrivals distributed in exponential form. In [7]
Moreira et al showed that MPLs greater than 6 are equal to infinite MPL. So the
greatest MPL evaluated was 6.

In Fig. 2 we can see graphically the avg. slowdowns of the response times with re-
spect to FIFO execution, for jobs in high and low communication degree workloads,
evaluated for MPL=2, 4 and 6 under CS and SCS policies with machine loads of 20%
and 60%. In general SCS dominates CS especially for high comm. degree workload
and MPL=4, in about 20%. For MPL=2, low comm. degree workloads and light
loaded machines, SCS and CS are quite similar.

High Comm.

0.2

0.4

0.6

0.8

1.0

2 4 6
MPL

Sl
ow

do
w

n

CS 60% CS 20%
SCS 60% SCS 20%

Low Comm.

0.2

0.4

0.6

0.8

1.0

2 4 6
MPL

Sl
ow

do
w

n

CS 60% CS 20%
SCS 60% SCS 20%

Fig. 2. Avg. Slowdowns for high and low comm. workloads under SCS and CS, varying MPL
(2, 4 and 6) and machine load (20% and 60%).

244 G. Utrera, J. Corbalán, and J. Labarta

Our CS configuration generates some kind of unfairness, when high and low
comm. jobs share resources, in favour of the second. This is because low comm. de-
gree jobs, do very few context switches as they rarely invoke MPI blocking functions,
so they almost never free the processor.

5 Concluding Remarks and Future Work

In this paper we have implemented and evaluated our proposed SCS technique and
compared to SSS or FIFO, and TS alternatives: PB, the native IRIX scheduler and
some CS configurations, under different workloads and system characteristics.

In the first part of the evaluation to avoid fragmentation and strictly measure the
impact with the maximum machine utilisation, we use a MPL=4, a fixed number of
processes per job, equal to 64, and the same arrival time for the entire workload. Here
we concluded that the SCS techniques with BI and choosing the next to run in the
local queue in a Round Robin manner seemed the best option. They showed also a
more predictable behaviour and stability than the TS techniques. SCS have an average
improvement from 20% to 40% over FIFO executions depending on the communica-
tion degree. On the other hand for applications, which have global synchronization or
do mostly calculations, CS showed better response times.

In the second part, we re-evaluate and compare the SCS and CS techniques in a
more realistic environment varying machine utilisation, with different number of
processes per job and arrivals time to the system. We observed that as in the first part,
SCS dominate the CS techniques especially for high machine utilisation. For low
machine utilisation, CS and SCS perform quite similar.

There is some fragmentation under the SCS generated due to the maximum MPL is
fixed, which goes from 9% for MPL=6 to 24% for MPL=2. This can be avoided if
MPI jobs were malleable. We are planning to work with moldable jobs, deciding the
optimal number of processes to run the job, depending on its scalability and the cur-
rent system fragmentation. As MPL and machine utilisation increment, the fragmenta-
tion in SCS decrements, improving its performance. On the contrary, with high MPL,
CS cannot afford the synchronization problem as good as the SCS.

In the future we plan to exploit the coordination between the queuing system and
the processor scheduler, and the knowledge about the job obtained at execution time
in order to determine for example its multiprogramming level dynamically. Although
this work has been done only on Shared Memory multiprocessors, we plan to extend
this work to the other platform in the future.

Acknowledgments

The research described in this work has been developed using the resources of the
DAC at the UPC and the European Centre for Parallelism of Barcelona (CEPBA) and
with the support of the. We would like to thank Xavier Martorell for his invaluable
help and comments and, preliminary version of the CPUM.

Scheduling of MPI Applications: Self-co-scheduling 245

References

1. A.C. Arpaci-Dusseau, D. Culler. Implicit Co-Scheduling: Coordinated Scheduling with
Implicit Information in Distributed Systems. ACM Trans. Compu. Sys. 19(3), pp.283-331,
Aug. 2001.

2. D. Bailey, T. Harris, W. Saphir, R. Wijngaart, A. Woo and M. Yarrow, "The NAS Parallel
Benchmarks 2.0", Technical Report NAS-95-020, NASA, December 1995.

3. J. Corbalan, X. Martorell, J. Labarta. Performance-Driven Processor Allocation. Proc. of
the 4th Operating System Design and Implementation (OSDI 2000), San Diego, CA, Octo-
ber 2000.

4. D.G.Feitelson and M.A.Jette. Improved Utilization and Responsiveness with Gang Sched-
uling. Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes in
Computer Science. Springer-Verlag 1997.

5. A.Gupta, A.Tucker, and S. Urushibara. The Impact of Operating System Scheduling Poli-
cies and Synchronization Methods on the Performance of Parallel Jobs. In Proceedings of
the 1991 ACM SIGMETRICS Conference, pages 120-132, May 1991.

6. Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Int. Journal
of SuperComputer Jobs, 8(3/4):165-414, 1994.

7. J.E.Moreira , W. Chan, L.L.Fong, H.Franke, M.A.Jette. An Infrastructure for Efficient Par-
allel Job Execution in Terascale Computing Environments. In Supecomputing’98, Nov.
1998.

8. S. Nagar, A.Banerjee, A.Sivasubramaniam, and C.R. Das. A Closer Look at Co-Scheduling
Approaches for a Network of Workstations. In Eleventh ACM Symposium on Parallel
Algorithms and Architectures, SPAA’99, Saint-Malo, France, June 1999.

9. Silicon Graphics, Inc. IRIX Admin: Resource Administration, Document number 007-
3700-005, http://techpubs.sgi.com, 2000.

10. G. Utrera, J. Corbalán and J. Labarta. “Study of MPI applications when sharing resources”,
Tech. Report number UPC-DAC-2003-47, 2003.
http://www.ac.upc.es/recerca/reports/DAC/2003/index,en.html

	1 Introduction
	2 Related Work
	3 Scheduling Policies Evaluated
	3.1 Self-co-scheduling Technique
	3.2 Time Sharing Techniques

	4 Evaluations
	4.1 Execution Environment
	4.2 Applications and Workloads
	4.3 Performance Results for the Scheduling Policies Evaluation
	4.4 Comparing CS and SCS Varying Workload and System Characteristics

	5 Concluding Remarks and Future Work
	Acknowledgments
	References

