
M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 304–309, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Compiler-Guided Code Restructuring
for Improving Instruction TLB Energy Behavior*

I. Kadayif1, M. Kandemir2, and I. Demirkiran3

1 Canakkale Onsekiz Mart University, Canakkale, Turkey
kadayif@comu.edu.tr

2 Pennsylvania State University, University Park, PA, USA
kandemir@cse.psu.edu

3 Syracuse University, Syracuse, NY, USA
idemirki@eecs.syracuse.edu

Abstract. This paper presents a compiler-directed strategy for reducing energy
consumption of instruction TLBs. The main idea is to restructure the code to in-
crease the chances that one can generate virtual-to-physical address translation
without going through the instruction TLB. The preliminary experimental re-
sults are promising.

1 Introduction and Motivation

TLB (translation lookaside buffer) is a crucial component that maintains recent vir-
tual-to-physical address translations. Optimizing energy consumption of TLB is criti-
cal due to two main reasons. First, since this component is accessed at each memory
reference, it can contribute to a significant fraction of on-chip energy budget. For
example, instruction and data TLBs are known to contribute to over 15% of on-chip
energy consumption in SH-3 and Intel StrongARM [14]. Second, since TLB is a very
small component, its power density can be quite high as a result of frequent accesses.
Therefore, reducing TLB energy consumption can be very important. TLB optimiza-
tion has been focus of several circuit and architecture level studies. For example, Juan
et al [7] proposed modifications to the basic cells and to the structure of TLBs that led
to15% improvement in per access energy consumption. Choi et al [3] proposed a two-
way banked filter TLB and a two-way banked main TLB. Balasubramonian et al [2]
and Delaluz et al [5] proposed changing the TLB configuration dynamically, based on
the need of the application at a given execution phase.

In a recent work, Kadayif et al [8] has demonstrated that using an optimizing com-
piler and a suitable help from the hardware, one can generate most of virtual-to-
physical address translations automatically, thereby reducing the frequency of iTLB
accesses. Their compiler-directed strategy operates as follows. Overall philosophy of
this strategy is to perform the translation for a page once, and subsequently keep reus-
ing it directly without going to the iTLB, as long as it does not change. This is
achieved through the use of a register called Current Frame Register (CFR), whose
format is of the form:

<Virtual Page Number, Physical Frame Number, Protection/Other Bits>.

* This research is partly supported by NSF Career Award #0093082.

Compiler-Guided Code Restructuring for Improving Instruction TLB Energy Behavior 305

Basically, this register holds the current virtual-to-physical address translation. As
long as we are sure that the current address translation does not change (i.e., we are
within the same page), we take the translation from the CFR without going to the
iTLB. Whenever there is a page change, we need to re-load (update) the CFR. This
occurs in two scenarios in normal execution as shown in Figure 1: (a) two successive
instructions, which are on page boundaries (we refer to this as the boundary case), i.e.,
one is the last instruction of a page, and the next is the first instruction of the next
page (we assume that instructions are aligned so that a single instruction does not
cross page boundaries), and (b) explicit branch instructions whose target is in a differ-
ent page (we call this the branch case).

In the compiler-based scheme proposed in [8], the compiler is used to determine
both the boundary and branch cases. The branch cases are handled as follows. The
compiler assumes that the branch target is within the same page as the branch instruc-
tion if the static analysis of the code by the compiler can reveal (with 100% accuracy)
that this indeed is the case (note that this typically occurs when branch targets are
given as immediate operands or as PC relative operands). Otherwise, if the branch is
unanalyzable or its target is proven to go outside the current instruction page, the
compiler conservatively assumes a page change and updates the CFR contents via an
iTLB access. The necessary compiler support for implementing this involves check-
ing whether the target of a statically analyzable branch is on the same page of the
branch itself. To handle the boundary case, the compiler inserts an explicit branch
instruction at the end of each instruction page, with the target being the very next
instruction (the first one on the next page). Note that this mechanism does not much
affect iL1 and L2 hits or misses, and thus it does not affect the rest of the memory
system energy consumption.

While the experimental results given in [8] indicate significant energy benefits
without much performance overhead, note that one can achieve even better energy
savings by restructuring the code. Specifically, what we need to do is to increase the
number of branches whose targets can be proven to be within the same page (as the
branch instruction itself). In the rest of this paper, we describe a compiler-directed
strategy to achieve this.

Boundary Case Branch Case

(a) (b)

Instruction
Page

Fig. 1. Two possible instruction page transitions during execution. (a) Boundary case. (b)
Branch case.

306 I. Kadayif, M. Kandemir, and I. Demirkiran

1. Order the edges according to non-increasing weights
2. While (there is a node to be included in T)

2.1. Select the edge with the largest weight
2.2. If (adding the selected edge to T does not increase
 the degree of an node in T to 3 AND does not
 create a cycle in T) then
 add the selected edge to T

3. Traverse T and store the nodes (basic blocks)
that are directly connected consecutively in memory

2 Code Restructuring for Translation Reuse

We can define our problem as follows. Consider the code layout shown in Figure
2(a). Let bi represent the size of basic block i, and P be the page size. We use B to
denote the set of all basic blocks in the code. The connections between basic blocks
(which correspond to the edges in the control flow graph representation of the pro-
gram) are indicated using edges eij = (bi, bj). Each edge eij also carries a weight, de-
noted wij, which indicates the importance of satisfying the edge. In this context,
strictly speaking, “satisfying edge eij” means colocating bi and bj within the same
instruction page. However, we will use a relaxed version of this definition, which says
if bi and bj are stored in memory one after another, eij is satisfied. Given an assignment
of basic blocks to memory (denoted using mapping M), it is likely that some edges
will remain inside a page, whereas some other edges will cross the page boundaries;
these two sets of edges are referred to as in-page edges and out-page edges in the rest
of this paper. Then, the cost of such an assignment can be formulated as: C(B,M) = Σi
Σj wij such that eij is an out-page edge. That is, the total weights of all out-page edges
give us the cost of mapping M. Obviously, our objective is to place basic blocks into
pages such that C(B,M) is minimized. In other words, we want to find an M that
minimizes C(B,M).

In this paper, we propose an algorithm for solving this problem of determining M
(a memory assignment) for all blocks in B as shown below:

This strategy, which is actually a heuristic, operates in a page size (P) oblivious
manner. Consequently, it adopts the relaxed definition of the concept of satisfying an
edge, as described above. This heuristic is similar to the Kruskal’s spanning tree algo-
rithm [4], and is given below. In this algorithm, E is the ordered set of edges (accord-
ing to their weights), and T is the (spanning) tree to be built.

b 0

b 1

b 2

b 5

b 4

b 3

b 0 b 1 b 2

b 3 b 4 b 5

b 0 b 4 b 5

b 1 b 2 b 3

(a)

(b)

(c)
Fig. 2. (a) An example code fragment. (b-c) Two alternate page assignments.

Compiler-Guided Code Restructuring for Improving Instruction TLB Energy Behavior 307

Basically, this algorithm builds a spanning tree (which includes all nodes in B and
a subset of edges in E), with the property that no node (basic block) is connected to
more than 2 neighbors. This is done so to guarantee that each pair of nodes with a
connected edge will be stored in memory consecutively (since in memory layout a
basic block can have only two neighbors). This algorithm is similar to the one pre-
sented in [9] for assigning program variables to memory locations in DSPs. The main
difference is that we work on basic blocks not variables since our objective is to re-
structure code layout for iTLB energy savings. Note also that this algorithm is com-
pletely different from prior work on instruction cache optimization [13, 6, 11, 10] as
we use a different representation and solution method. It is to be noted, while this
algorithm does not take into account the page size (P), we do not expect this to be a
major problem in practice. This is because the algorithm will fail to optimize only in
cases where the two basic blocks with high affinity fall into different pages. Given the
large page sizes, we do not expect this to occur very frequently.

Figures 2(b) and (c) illustrate two possible page assignments, assuming, for sim-
plicity, that each page can hold three basic blocks. The first alternative (shown in (b))
is the straightforward one, whereas the second (the one in (c)) is the one generated by
our approach (under the assumption of same weights for all edges between the basic
blocks). In both the cases, the thick line delineates the page boundary. Note that, in
our case, there is only one out-page edge, while we have five out-page edges in the
straightforward option.

3 Preliminary Experiments

We have implemented the proposed strategy and performed experiments with several
Spec95 applications. The experiments have been performed using SimpleScalar [1],
and the energy numbers have been obtained through CACTI [12]. In Figure 3(a), we
present the normalized energy consumptions for two different strategies. The first
strategy (marked opt-1) is the one presented in [8]. It uses the CFR to the fullest ex-
tent possible, but does not restructure code for the CFR reuse. The second strategy
(marked opt-2) represents the results obtained through the compiler-based code re-
structuring strategy discussed in this paper. For each benchmark, both the bars are
normalized with respect to the iTLB energy consumption of the original (default)
case, where we do not make use of CFRs, and all instruction accesses go through
iTLB. Note that in both opt-1 and opt-2, all extra energy consumptions due to CFR
accesses have been included in the results. We observe from these results that, in five
out of six benchmarks, our approach improves the iTLB energy consumption beyond
the method presented in [8]. That is, restructuring application codes for CFR reuse is
useful in practice. The performance (execution cycle) results are given in Figure 3(b).
As before, all the bars are normalized with respect to the default version, where no
iTLB energy-saving technique is used. We see that, while opt-1 generates (almost) the
same results with the default version, opt-2 slightly improves performance as well.
This is because our approach also enhances instruction cache locality by bringing the
blocks with temporal affinity together. Therefore, we can conclude that the proposed
scheme brings both energy and performance benefits. Our on-going work involves
implementing an optimal scheme for basic block re-ordering (based on integer linear
programming), and comparing it against the scheme proposed in this paper.

308 I. Kadayif, M. Kandemir, and I. Demirkiran

References

1. T. Austin, E. Larson, and D. Ernst. SimpleScalar: an infrastructure for computer system
modeling. IEEE Computer Magazine, pp. 59-67, Feb 2002.

2. R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Memory hier-
archy reconfiguration for energy and performance in general-purpose processor architec-
tures. In Proc. 33rd International Symposium on Microarchitecture, pp. 245--257, Decem-
ber 2000.

3. J-H. Choi, J-H. Lee , S-W. Jeong , S-D. Kim , and C. Weems. A low-power TLB structure
for embedded systems. IEEE Computer Architecture Letters, Volume 1, January 2002.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms, Sec-
ond Edition, The MIT Press, 2001.

5. V. Delaluz, M. Kandemir, A. Sivasubramaniam, M. J. Irwin, and N. Vijaykrishnan. Reduc-
ing dTLB energy through dynamic resizing. In Proc. the 21st International Conference on
Computer Design, San Jose, California, October, 2003.

6. N. Gloy, T. Blackwell , M. D. Smith, and B. Calder. Procedure placement using temporal
ordering information. In Proc.the 30th ACM/IEEE International Symposium on Microar-
chitecture, p.303-313, December 01-03, 1997.

(a)

0

2

4

6

8

mes
a

cra
fty

fm
a3

d
eo

n
ga

p
vo

rte
xN

or
m

al
iz

ed
 iT

LB
 E

ne
rg

y
(%

)

opt-1 opt-2

(b)

90
92
94
96
98

100
102

mesa crafty fma3d eon gap vortexN
or

m
al

iz
ed

 E
xe

cu
tio

n
C

yc
le

s
(%

)

opt-1 opt-2

Fig. 3. (a) Normalized iTLB energy. (b) Normalized execution cycles.

Compiler-Guided Code Restructuring for Improving Instruction TLB Energy Behavior 309

7. T. Juan, T. Lang, and J. J. Navarro. Reducing TLB power requirements. In Proc. Interna-
tional Symposium on Low Power Electronics and Design, 1997.

8. I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and G. Chen. Generating
physical addresses directly for saving instruction TLB energy. In Proc. International Sym-
posium on Microarchitecture, Istanbul, Turkey, November 2002.

9. S. Liao, S. Devadas, K. Keutzer, S. W. K. Tjiang, and A. Wang. Storage assignment to de-
crease code size. In Proc. International Symposium on Programming Language Design and
Implementation, pp. 186-195, 1995.

10. S. McFarling, Procedure merging with instruction caches. ACM SIGPLAN Notices, v.26
n.6, p.71-79, June 1991.

11. K. Pettis and R. C. Hansen. Profile guided code positioning, ACM SIGPLAN Notices, v.25
n.6, p.16-27, June 1990.

12. G. Reinman and N. P. Jouppi. CACTI 2.0: an integrated cache timing and power model.
Research Report 2000/7, Compaq WRL, 2000.

13. A. D. Samples and P. N. Hilfinger. Code reorganization for instruction caches. Technical
Report UCB/CSD 88/447, University of California, Berkeley, October 1988.

14. SH-3 RISC processor family.
http://www.hitachi-eu.com/hel/ecg/products/micro/32bit/sh_3.html.

	1 Introduction and Motivation
	2 Code Restructuring for Translation Reuse
	3 Preliminary Experiments
	References

