A Highly Scalable Parallel Caching System
for Web Search Engine Results

T. Fagni!, R. Perego!, and F. Silvestri'-?

! Istituto ISTI, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
2 Dipartimento di Informatica, Universitd di Pisa, Italy

Abstract. This paper discusses the design and implementation of SDC,
a new caching strategy aimed to efficiently exploit the locality present in
the stream of queries submitted to a Web Search Engine. SDC stores the
results of the most frequently submitted queries in a fized-size read-only
portion of the cache, while the queries that cannot be satisfied by the
static portion compete for the remaining entries of the cache according to
a given cache replacement policy. We experimentally demonstrated the
superiority of SDC over purely static and dynamic policies by measuring
the hit-ratio achieved on two large query logs by varying cache parame-
ters and the replacement policy used. Finally, we propose an implemen-
tation optimized for concurrent accesses, and we accurately evaluate its
scalability.

1 Introduction

Due to the high locality present in the stream of queries processed by a Web
Search Engine (WSE), caching the results of the queries submitted by users
is a very effective technique to increase the throughput. WSE results caching,
similarly to Web page caching, can occur at several places, e.g. on the client
side, on a proxy, or on the server side. Caching on either the client or the proxy
has the advantage of saving network bandwidth. Caching on the server side,
on the other hand, has the effect of saving I/O and computational resources
used by the WSE to compute the page of relevant results to be returned to a
user. One of the issues related to server-side caching is the limited resources
usually available on the server, in particular the RAM memory used to store
the cache entries. However, the architecture of a scalable, large-scale WSE is
very complex and includes several machines which take care of the various sub-
tasks involved in the processing of user queries. The distributed architecture
of a large-scale WSE [7, 1] is composed by a farm of identical machines running
multiple WSE Core modules, each of which is responsible for searching the index
relative to one specific sub-collection of documents. In front of these searcher
machines we have an additional machine hosting a Mediator. This module has
the task of scheduling the queries to the various searchers, and of collecting
the results returned back. Note that multi-threading is exploited extensively by
all these modules in order to process concurrently distinct queries. Within this
architecture the RAM memory is a very precious resource for the machines that

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 347-354, 2004.
© Springer-Verlag Berlin Heidelberg 2004

348 T. Fagni, R. Perego, and F. Silvestri

host the WSE Core, which perform well only if the mostly accessed sections of
their huge indexes can be buffered into the main memory. Conversely, the RAM
memory is a less critical resource for the machine that hosts the Mediator. This
machine can thus be considered as an ideal candidate to host a server-side cache.
The performance improvement which may derive from the exploitation of query
results caching at this level is remarkable. Queries resulting in cache-hits can be
in fact promptly served thus enhancing WSE throughput, but also the queries
whose results are not found in cache benefit substantially due to the lower load
on the WSE and the consequent lower contention for the 1/0, network and
computational resources.

Beside the fact that several papers analyzed query logs to study the behav-
ior of WSE users, only a few works propose effective techniques to exploit the
locality present in the stream of user requests[5,9, 4]. Markatos compared sev-
eral caching policies on the basis of the hit-ratio obtained on a actual log of
queries submitted to Excite [5]. The work by Saraiva et al. [9], discusses in-
stead a two-level caching system which try to enhance the responsiveness of a
hierarchically-structured search engine The first-level cache is similar to the one
discussed in [5], while, the second-level cache is intended to store the posting lists
of the keywords contained into the query strings. Finally, Lempel and Moran re-
cently proposed PDC (Probabilistic Driven Caching), a new effective caching
policy which associates a probability distribution to all the possible queries that
can be submitted to a WSE. The distribution is built over the statistics com-
puted on the previously submitted queries, and is used to compute a priority
exploited to maintain an importance ordering among the entries of the cache.

In this paper, we are interested in studying the design and implementation
of such a server-side cache of query results. Starting from the analysis of the
content of two real query logs, we propose a novel replacement policy (called
SDC- Static and Dynamic Cache) to adopt in the design of a fully associative
cache of query results. According to SDC, the results of the most frequently
accessed queries are maintained in a fixed size set of statically locked cache
entries. This Static Set is rebuilt at fixed time intervals using statistical data
coming from WSE usage data. When a query cannot be satisfied by the Static
Set, it competes for the use of a Dynamic Set of cache entries. The management
of the Dynamic Set can exploit, in principle, any replacement policy. In all the
tests performed, the presence of a static portion of the cache resulted in large
advantages both on the hit-ratio achieved and on the overall throughput of the
caching system. We experimentally evaluated SDC by measuring the hit-ratio
and the throughput achieved on actual query logs by varying the size of the
cache, the percentage of cache entries of the Static Set, and the replacement
policy used for managing the Dynamic Set. Differently from the other works,
we also accurately assessed the scalability of our caching system with respect to
the number of concurrent threads using it. The paper is organized as follows.
Section 2 describes the query logs used, while in Section 3 we discuss our novel
caching policy. Section 4 shows the results of the simulations performed on the
different query logs. Finally, Section 5 presents some concluding remarks.

A Highly Scalable Parallel Caching System for Web Search Engine Results 349

2 Analysis of the Query Logs

In order to evaluate the behavior of different caching strategies we used query
logs from the Tiscali and Altavista search engines. In particular we used Tiscal,
a trace of the queries submitted to the Tiscali WSE engine (www.janas.it) on
April 2002, and Altavista a query log containing queries submitted to Altavista
on the Summer of 2001'. Each record of a query log refers to a single query
submitted to the WSE for requesting a page of results, where each page contains
a fixed amount of URLs ordered according to a given rank. All query logs have
been preliminarily cleaned by removing the useless fields. At the end of this pre-
processing phase, each entry of a query log has the form (keywords, page_no),
where keywords corresponds to the list of words searched for, and page_no de-
termines which page of results is requested. We further normalize the query log
entries by removing those referring to requests of more than 10 results-per-page.
After the cleaning, the Altavista query log contains 6,175, 648 queries of which
2,657,410 are distinct. The Tiscali logs is instead composed of 3,278,211 queries
of which 1,538,934 are distinct. Thus in both the logs about the 54% of the total
number of queries are repeated more than once. The plots reported in Figure 1
assess the locality present in the query logs using a log-log scale. In particular
Figure 1.(a) plots the number of occurrences within each log of the most popular
queries, whose identifiers have been assigned in decreasing order of frequency.
Note that, in all the two logs, more then 10,000 different queries are repeated
more than 10 times. Since the number of occurrences of a given query is a mea-
sure that might depend on the total number of records contained in the logs, to
better highlight temporal locality present in the logs we also analyzed the time
interval between successive submissions of the same query. The rationale is that
if a query is repeatedly submitted within a small time interval, we can expect
to be able to retrieve its results even from a cache of small size. Figure 1.(b)
reports the results of this analysis. For each query log we plotted the cumulative
number of resubmissions of the various queries as a function of the time interval
(expressed as a distance measured in number of queries). Once more the results
are encouraging: in the Tiscali log for more than 350,000 times, the time in-
terval between successive submissions of the same query is less than 100; in the
Altavista log this temporal locality is slightly smaller than that in Tiscali but,
again, for more than 150,000 times the time interval is still less than 100.

3 The SDC Policy

SDC is a two-level policy which makes use of two different sets of cache entries.
The first level contains the Static Set consisting in a set of statically locked
entries filled with the most frequent queries appeared in the past. The Static Set
is periodically refreshed. The second level contains the Dynamic Set. Basically,
it is a set of entries managed by a classical replacement policy (i.e. LRU, SLRU,

! 'We are very grateful to Ideare S.p.A. and to Ronny Lempel for providing us with
these query logs.

350 T. Fagni, R. Perego, and F. Silvestri

Occurrences of the most popular queries Distance (as number of queries) among repeated submissions of the same

100000 — T T T T T 700000 —
Altavista Altavista

K Tiscali - Tiscali =====-

) 600000 I

10000
500000 -

1000 ¢ 400000 |

Occurrences

100 1 300000 - /

Number of queries

200000 ff

100000

. S 0
1 10 100 1000 10000 100000 1e+06 1e+07 0 100 200 300 400 500 600 700 800 900 1000
popularity rank Distance

(a) (b)

Fig. 1. Analysis of the locality present in the query logs.

etc.). The behavior of SDC in the presence of a query ¢ is very simple. First
it looks for ¢ in the Static Set, if ¢ is present it returns the associated page of
results back to the user. If ¢ is not contained within the Static Set, then it is
looked for in the Dynamic Set. If ¢ is not present, then SDC asks the WSE for
the page of results and replaces an entry of the Dynamic Set according to the
replacement policy adopted.

The rationale of adopting a static policy, where the entries to include in the
cache are statically decided, relies on the observation that the most popular
queries submitted to WSEs do not change very frequently. On the other hand,
several queries are popular only within relatively short time intervals, or may
become suddenly popular due to, for example, un-forecasted events (e.g. the
11*" September 2001 attack). The advantages deriving from this novel caching
strategy are two-fold. In fact the results of the most popular of the queries can
always be usually retrieved from the Static Set even if some of these queries
might be not requested for relatively long time intervals. On the other hand, the
Dynamic Set of the cache can adequately cover sudden interests of users.

First Level — Static Set. The implementation of the first level of our caching
system is very simple. It basically consists of a lookup data structure that allows
to efficiently access a set of fstqric - N entries, where N is the total number
of entries of the whole cache, and fsqtic the factor of locked entries over the
total. fstatic is @ parameter of our cache implementation whose admissible values
ranges between 0 (a fully dynamic cache) and 1 (a fully static cache). The static
cache has to be initialized off-line, i.e., with the results of most frequent queries
computed on the basis of a previously collected query log.

Each time a query is received, SDC first tries to retrieve the corresponding
results from the Static Set. On a cache hit, the requested page of results is
promptly returned. On a cache miss, we also look for the query results in the
Dynamic Set.

A Highly Scalable Parallel Caching System for Web Search Engine Results 351

Second Level — Dynamic Set. The Dynamic Set relies on a replacement pol-
icy for choosing which pages of query results should be evicted from the cache
as a consequence of a cache miss and the cache is full. Literature on caching pro-
poses several replacement policies which, in order to maximize the hit-ratio, try
to take the largest advantage from information about recency and frequency of
references. SDC surely simplifies the choice of the replacement policy to adopt.
The presence of a static read-only cache, which permanently stores the most
frequently referred pages, makes in fact recency the most important parameter
to consider. Currently, our caching system supports the following replacement
policies: LRU, LRU/2 [6] which applies a LRU policy to the penultimate refer-
ence, FBR [8], SLRU [5], 2Q [3], and PDC' [4] which consider both the recency
and frequency of the accesses to cache blocks.

4 Experiments

All the experiments were conducted on a Linux PC equipped with a 2GHz
Pentium Xeon processor and 1GB of RAM. Since SDC requires the blocks of
the static section of the cache to be preventively filled, we partitioned each query
log into two parts: a training set which contains 2/3 of the queries of the log, and
a test set containing the remaining queries used in the experiments. The N most
frequent queries of the training set were then used to fill the cache blocks: the
first fstatic - N most frequent queries (and corresponding results) were used to
fill the static portion of the cache, while the following (1 — fsatic) - IV queries to
fill the dynamic one. Note that, according to the scheme above, before starting
the tests not only the static blocks but also the dynamic ones are filled, and
this holds even when a pure dynamic cache (fsiaric = 0) is adopted. In this way
we always starts from the same initial state to test and compare the different
configurations of SDC, obtained by varying the factor fsaric. (1.e. warm cache,
using the terminology in [4]).

Figures 2 reports the cache hit-ratios obtained on the Tiscali (a), and Altavista
(b) query logs by varying the ratio (fstatic) between the sizes of the static and
dynamic sets. Each curve corresponds to a different replacement policy used for
the dynamic portion of the cache. In particular, fsiqtic was varied between 0 (a
fully dynamic cache) and 1 (a fully static cache), while the replacement policies
exploited were LRU, FBR [8], SLRU [5], 2Q [3], and PDC [4]. The total size of
the cache was fixed to 256,000 blocks. Several considerations can be done look-
ing at these plots. First, we can note that the hit-ratios achieved are in some
cases impressive, although the curves corresponding to different query logs have
different peak values and shapes, thus indicating different amounts and kinds of
locality in the query logs analyzed. At a first glance, these differences surprised
us. After a deeper analysis we realized that similar differences can also be found
by comparing other query logs already studied in the literature [10,2,11], thus
indicating that users’ behaviors may vary remarkably from time to time. Another
important consideration is that in all the tests performed SDC remarkably out-
performed the other policies, whose performance are exactly those corresponding

352 T. Fagni, R. Perego, and F. Silvestri

to a value of fgiqtic = 0. The best choice of the value for fqi44ic depends from the
query log considered and, more importantly, the different replacement policies
do not impact heavily on the overall hit-ratio for the optimal values of fstatic.

Tiscali: hit-ratio vs. Dynamic Set policy and fg,;.. W/o prefetching. Size 256,000 Altavista: hit-ratio vs. Dynamic Set policy and fg;.. W/o prefetching. Size 256,000
48 T T T T 36

46 34

44 Lo
32

42

40 ¢

hit-ratio
hit-ratio

38

'sia'm fstaﬂc

Tiscali: hit-ratio vs. cache size and fq,;.. W/o prefetching. Policy LRU
55 T T T T T

50

45

40

hit-ratio
hit-ratio

35

'S‘EI\C:O

.

static=0

30 fotaic=0-2 15 fo1aic=0-2 1
fotatic=0-4 fstatic=0-4

25 |/ Tetatic=0-6 10 | Tstatic=0-6 1
fstaic=0-8 H

20 stati™" 5

0 50000 100000 150000 200000 250000 300000 0 100000 200000 300000 400000 500000 60000C
cache size (in number of entries) cache size (in number of entries)
(c) (d)

Fig. 2. Hit-ratios achieved on Tiscali and Altavista logs for different replacement poli-
cies and varying fstatic-

To measure the sensitivity of SDC with respect to the size of the cache, Fig-
ures 2 plot the hit-ratios achieved on the Tiscali (¢) and Altavista (d) query logs
as a function of the number of blocks of the cache and the fgiqs;c parameter. As
expected, when the size of the cache is increased, hit-ratios increase correspond-
ingly. In the case of the Tiscali log, the hit-ratio achieved is about 37% with
a cache of 10,000 blocks, and about 45% when the size of the cache is 50, 000.
Note that actual memory requirements are however limited: a cache storing the
results as an Html page and composed of 50,000 blocks requires about 200MB
of RAM.

We designed our caching system to allow efficient concurrent accesses to
its blocks. This is motivated by the fact that a WSE has to process several user
queries concurrently. This is usually achieved by making each query processed by
a distinct thread. The methods exported by our caching system are thus thread-
safe and also ensure the mutual exclusion. In this regard, the advantage of SDC

A Highly Scalable Parallel Caching System for Web Search Engine Results 353

over a pure dynamic cache is related to the presence of the StaticTable, which is
a read-only data structure. Multiple threads can thus concurrently lookup the
StaticTable to search for the results of the submitted query. In case of a hit, the
threads can also retrieve the associated page of results without synchronization.
For this reason our caching system may sustain linear speed-up even in configu-
rations containing a very large number of threads. Conversely, the DynamicTable
must be accessed in the critical section controlled by a mutex. Note, in fact, that
the DynamicTable is a read-write data structure: while a cache miss obviously
causes both the associative memory and relative list of pointers to be modified,
also a cache hit entails the list pointers to be modified in order to sort the cache
entries according to the replacement policy adopted.

Scalability
400

T =
f_static=0—+— ¥
f_static=0.4---
f_static=0.8-
[f_static=1
ideal —-m-—

x

35

3

LY-F"
.

300 -

250 -

200 -

150 -

100

50 —

50 100 150 200 250 300 350 400
Number of threads

Fig. 3. Scalability of our caching system for different values of fsiqtic as a function of
the number of concurrent threads used.

Figure 3 shows the performance of our cache system in a multi-threading
environment. In particular, the Figure plots, for different values of fstqtic, the
scalability of the system as a function of the number of concurrent threads
sharing a single cache. Scalability has been measured by considering the ratio
between the wall-clock times spent by one and n threads to serve the same large
bunch of queries. The replacement policy adopted in running the test was LRU.
In the case of a cache hit, the thread serving the query returns immediately
the requested page of results, and gets another query. Conversely, when a query
causes a cache miss, the thread sleeps for 40 ms to simulate the latency of the
WSE core in resolving the query. As it can be seen, the system scales very well
even when a large number of concurrent threads is exploited. The scalability
of a purely static cache is optimal since the cache is accessed read-only, but
high scalability values are achieved also when SDC is adopted. Note that even
when a purely dynamic cache is adopted (fstatic = 0), our system scales linearly
with up to 250 concurrent threads due to the very low cache management times
(experimentally measured between 11 and 36.us).

354 T. Fagni, R. Perego, and F. Silvestri

5 Conclusions and Future Works

In this paper we presented SDC, a new policy for caching the query results of
a WSE which exploits the knowledge about the queries submitted in the past
to make more effective the management of the cache. In particular, we maintain
the most popular queries and associated results in a read-only static section of
our cache. Only the queries that cannot be satisfied by the static cache section
compete for the use of a dynamic cache. The benefits of adopting SDC were
experimentally shown on the basis of tests conducted with two large query logs.
In all the cases our strategy remarkably outperformed either purely static or
dynamic caching policies. We evaluated the hit-ratio achieved by varying the
percentage of static blocks over the total, the size of the cache, as well as the
replacement policy adopted for the dynamic section of our cache. Moreover, we
evaluated cost and scalability of our cache implementation when executed in a
multi-threaded environment. The SDC implementation resulted very efficient
due to an accurate software design that allowed to make cache hit and miss
times negligible, and to the presence of the read-only static cache that reduces
the synchronization between multiple threads concurrently accessing the cache.

References

1. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1-7):107-117, 1998.

2. Bernard J. Jansen, Amanda Spink, and Tefko Saracevic. Real life, real users, and
real needs: a study and analysis of user queries on the web. Inf. Proc. and Manag.,
36(2):207-227, 2000.

3. Theodore Johnson and Dennis Shasha. 2q: A low overhead high performance buffer
management replacement algorithm. In Proc. 1994 VLDB, pages 439-450, 1994.

4. Ronny Lempel and Shlomo Moran. Predictive caching and prefetching of query
results in search engines. In Proc. of the twelfth international conference on World
Wide Web, pages 19-28. ACM Press, 2003.

5. Evangelos P. Markatos. On caching search engine results. In Proc. of the 5th Int.
Web Caching and Content Delivery Workshop, 2000.

6. Elisabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The Iru-k page re-
placement algorithm for database disk buffer. In Proc. of the 1998 ACM SIGMOD
International Conference On Management Of Data, pages 297-306, 1993.

7. S. Orlando, R. Perego, and F. Silvestri. Design of a parallel and distributed web
search engine. In In proc. of ParCo 2001 int’l conf., 2001.

8. John T. Robinson and Murthy V. Devarakonda. Data cache management using
frequency-based replacement. In Proc. of the 1990 ACM SIGMETRICS Confer-
ence, pages 134-142, 1990.

9. P.C. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira, R. Fonseca, and B. Ribeiro-
Neto. Rank-preserving two-level caching for scalable search engine. In SIGIR’01,
2001.

10. C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of a very large
web search engine query log. In ACM SIGIR Forum, pages 6-12, 1999.

11. A. Spink, B.J. Jansen, D. Wolfram, and T. Saracevic. Searching the web: the
public and their queries. J. Am. Soc. Inf. Sc. & Tech., 53(2):226-234, 2001.

	1 Introduction
	2 Analysis of the Query Logs
	3 TheSDC Policy
	4 Experiments
	5 Conclusions and Future Works
	References

