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Abstract. The efficient execution of OLAP queries, which are typically read-
only and heavy-weight, is a hard problem which has been traditionally solved 
using tightly-coupled multiprocessors. Considering a database cluster as a cost-
effective alternative, we propose an efficient, yet simple, solution, called fined-
grained virtual partitioning to OLAP parallel query processing. We designed 
this solution for a shared-nothing database cluster architecture that can scale up 
to very large configurations and support black-box DBMS using non intrusive, 
simple techniques. To validate our solution, we implemented a Java prototype 
on a 16 node cluster system and ran experiments with typical queries of the 
TPC-H benchmark. The results show that our solution yields linear, and some-
times super-linear, speedup. With 16 nodes, it outperforms traditional virtual 
partitioning by a factor of 6. 

1   Introduction 

Decision support applications require efficient support for On-Line Analytical Proc-
essing (OLAP) on larger and larger databases. OLAP queries are typically read-only 
and heavy-weight. In the TPC-H benchmark [12], specific to decision support sys-
tems, twenty-two database queries are complex, heavy-weight and read-only and only 
two have updates. Furthermore, OLAP queries have an ad-hoc nature. As users get 
more experienced about OLAP system features, they demand more efficient ad-hoc 
query support [5].  

The efficient execution of OLAP queries, where “efficiency” means “as fast as 
possible”, is still an open problem. High-performance of database management has 
been traditionally achieved with parallel database systems [13], implemented on 
tightly-coupled multiprocessors. Parallel data processing is then obtained by partition-
ing and replicating the data across the multiprocessor nodes in order to divide proc-
essing. Although quite effective, this solution requires the database system to have 
full control over the data and is expensive in terms of software and hardware. Clusters 
of PC servers provide a cost-effective alternative to tightly-coupled multiprocessors. 
Recently, the database cluster approach, i.e. clusters with off-the-shelf (black-box) 
DBMS nodes, has gained much interest for various database applications [1, 4, 9]. 

In this paper, we propose a solution to efficient OLAP query processing in a data-
base cluster using simple parallel processing techniques. The basic technique we 
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employ is virtual partitioning [1] which gives more flexibility than physical (static) 
data partitioning [7] for parallel query processing. In its simplest form, it consists in 
fully replicating the database among the cluster nodes. To distribute the workload, 
predicates are added to queries to force each DBMS to process a different subset, 
called a virtual partition, of data items. Each DBMS processes exactly one sub-query. 
The problem is these sub-queries can take almost as long as the original query to be 
executed. Depending on the estimated amount of data to be processed, DBMS opti-
mizers can opt for fully scanning the virtually partitioned table, reducing (or even 
eliminating) benefits obtained from virtual partitioning. Temporary disk-based struc-
tures demanded by sub-queries that deal with huge amounts of data can also limit 
virtual partitioning performance. In this paper, we propose a major improvement 
called fine-grained virtual partitioning (FGVP) which addresses these problems. As 
proposed in [1], virtual partitioning assigns each cluster node one sub-query, what can 
lead to problems aforementioned. Our approach is to work with a larger number of 
virtual partitions, much greater than the number of nodes. It is an attempt to keep sub-
queries as simple as possible, avoid full table scans and expensive temporary disk-
based structures. Our experimental results, based on our implementation on a 16-node 
cluster running PostgreSQL, show that linear, and sometimes super-linear, speedup is 
obtained for typical OLAP queries. In the worst cases, almost linear speedup is 
achieved. FGVP outperformed the traditional virtual partitioning for all queries when 
using more than two nodes. We think FGVP also provides a good basis for dynamic 
load balancing as it makes it possible to perform sub-query reallocation. This article is 
organized as follows. Section 2 presents our database cluster architecture. Section 3 
describes our fine-grained virtual partitioning technique. Section 4 describes our pro-
totype implementation as well as experimental results. Section 5 concludes. 

2   Database Cluster Architecture 

A database cluster [1] is a set of PC servers interconnected by a dedicated high-speed 
network, each one having its own processor(s) and hard disk(s), and running an off-
the-shelf DBMS. Similar to multiprocessors, various cluster system architectures are 
possible: shared-disk, shared-cache and shared-nothing [13]. Shared-disk and shared-
cache require a special interconnect that provides a shared space to all nodes with 
provision for cache coherence using either hardware or software. Shared-nothing (or 
distributed memory) is the only architecture that does not incur the additional cost of 
a special interconnect. Furthermore, shared-nothing can scale up to very large con-
figurations. Thus, we strive to exploit a shared-nothing architecture as in PowerDB 
[11] and Leg@Net [4]. Each cluster node can simply run an inexpensive (non paral-
lel) DBMS. In our case, we use the PostgreSQL [8] DBMS, which is freeware. Fur-
thermore, the DBMS is used as a “black-box” component [4]. In other words, its 
source code is not available and cannot be changed or extended to be “cluster-aware”. 
Therefore, extra functionality like parallel query processing capabilities must be im-
plemented via middleware. 

We use data replication to improve performance. As in [1, 4], we assume full data-
base replication for simplicity: each database is replicated at each node. To maintain 
copy consistency, we can assume a preventive replication protocol [2] which scales 
up well in cluster systems. But since database updates are rare in OLAP applications, 
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copy consistency is not an issue. The only potential problem with full database repli-
cation is database size, which can be huge. A good solution is to have a mix of data 
replication and data partitioning as in [9]. Our technique can be employed in such 
configurations. 

In our system architecture, query processing is done by independent DBMSs or-
chestrated by distributed middleware. Our middleware main components are Client 
Proxy, Cluster Query Processor, Catalog Manager and Node Query Processor (see 
Figure 1). The Client Proxy is the system entry point. It is used by client applications 
for query submission. Upon reception, the Client Proxy passes the query on to the 
Cluster Query Processor (CQP) which is responsible for elaboration and execution of 
Query Execution Plans (QEP). Elaborating a QEP means determining the virtual 
partitioning attributes, the number of virtual partitions and the participating nodes. For 
QEP elaboration, metadata information like schema definition and database statistics 
is obtained from the Catalog Manager. When the QEP is ready, the CQP starts the 
threads responsible for distributed query execution management and final result com-
position. This process involves interaction with the Node Query Processors. By defi-
nition, each node in a database cluster runs a DBMS instance [1]. In our architecture, 
each node has also a Node Query Processor (NQP) which is responsible for node-
level query execution and result composition. After receiving its workload from the 
CQP, the NQP interacts with the local DBMS, submitting SQL queries and collecting 
their corresponding results. These results are locally computed and sent to the CQP 
which does global result composition. When all NQPs are finished, the CQP sends the 
final results to the Client Proxy for delivery to the client application. 

3   Dynamic Virtual Partitioning 

In this section, we introduce the principle of virtual partitioning and describe our 
proposal of fine-grained virtual partitioning. 

Assuming a fully replicated database, virtual partitioning adds predicates to queries 
to force each DBMS to process a different subset, called a virtual partition, of data 

Fig. 1. Database Cluster Architecture 
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items. For example, let us consider query Q1 which accesses the Lineitem relation, 
the largest one from TPC-H: 

Q1:  SELECT l_returnflag, l_linestatus, SUM(l_quantity), COUNT(*) 
 FROM lineitem 
 WHERE l_shipdate <= date '1998-12-01' - interval '90 day' 
 GROUP BY l_returnflag, l_linestatus; 

Q1 is a typical OLAP query. It has an aggregate and accesses a huge table (in TPC-
H’s smallest configuration, Lineitem has 6,001,215 tuples). The select predicate is not 
very selective since there are 5,916,519 tuples that satisfy it. For simplicity, it con-
tains no joins. Using virtual partitioning, this query would be rewritten by adding the 
predicate �and l_orderkey >= :v1 and l_orderkey < :v2� to the “where� clause of Q1. 
The rewritten query can then be submitted to the nodes that participate in Q1 process-
ing. Lineitem�s primary key is formed by the attributes l_orderkey and l_linenumber. 
Since there is a clustered index on the primary key and l_orderkey has a large range 
of values, l_orderkey has been chosen as the virtual partitioning attribute. Each node 
receives the same query, but with different values for v1 and v2, so that the whole 
range of l_orderkey is scanned. This technique allows great flexibility for node alloca-
tion during query processing: any set of nodes in the cluster can be chosen for execut-
ing any query. 

One basic goal of virtual partitioning is to reduce the amount of data read from 
disk by each DBMS. Clustered indexes play an important rule as, by using them, each 
DBMS can work on a different subset of disk pages. However, the existence of such 
indexes based on attributes used for virtual partitioning does not guarantee their use 
during query processing. DBMS query optimizers decide using them or not according 
to estimations on the amount of data to be retrieved, which depends on the attribute 
value range specified in each sub-query. Incidentally, the optimizer can even opt for 
performing a full scan on the virtually partitioned table. We experienced this when 
performing experiments with virtual partitioning and PostgreSQL. 

To overcome this problem, we propose an optimization technique called “fine-
grained virtual partitioning” (FGVP). Instead of assigning one sub-query per node (as 
in [1]), our approach is to produce an initial number of virtual partitions greater than 
the number of participating cluster nodes. For example, if four cluster nodes are cho-
sen to participate in a query processing we could produce sixty-four virtual partitions, 
generating sixty-four sub-queries. Then, sixteen sub-queries would be submitted to 
each node. The number of initial partitions should be much greater than the number of 
participating nodes, each partition corresponding to a small range of data items. We 
believe small sub-queries can bring many improvements to traditional virtual parti-
tioning. They make it possible to avoid full scans on the virtually partitioned table. 
Besides, some queries demand temporary structures to store data while being proc-
essed. According to the amount of data, disk resources have to be employed. Small 
queries can exclusively use main memory structures. 

In [10], small physical database fragments are also used for OLAP query process-
ing with good results. A data fragmentation technique to be applied on fact tables is 
proposed, called multi-dimensional hierarchical fragmentation (MDHF). Its success 
solely depends on a good fragmentation. FGVP has the advantage of not requiring 
physical data fragmentation, facilitating the migration of applications from sequential 
environments, as in [4]. 
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FGVP can provide a good basis for the introduction of dynamic load balancing in 
virtual partitioning. As proposed in [1], traditional virtual partitioning assigns each 
node exactly one sub-query. Normally, when a DBMS starts executing a query, it is 
not possible to externally stop it, modify the query and resume execution. So, there is 
no room for workload redistribution. Working with more sub-queries than cluster 
nodes, as FGVP proposes, could make sub-query reallocation possible, easing load 
balancing. The more partitions we have, the more opportunities to perform dynamic 
optimization. 

Obviously, if there are too many virtual partitions, performance can degrade as 
more inter-process communication would become necessary. The problem is thus to 
determine the number of virtual partitions. By now, we use a static approach based on 
database statistics and DBMS-specific information, like the threshold after which the 
DBMS starts performing full table scans instead of using clustered indexes. As our 
goal is just to investigate the general behavior of FGVP, we employ this simple ap-
proach by now in spite of not thinking it is appropriate for cluster databases with 
black-box DBMSs. Alternatively, as database clusters and multi-database systems [7] 
are similar in many aspects, one can reuse techniques of predicting query execution 
costs in such environments [3, 6, 14]. 

4   Experimental Validation 

To validate our solution, we implemented a prototype on a cluster system and ran 
experiments with the TPC-H benchmark. The cluster system has 16 nodes, each with 
2 Pentium III 1 GHz processors, 512 Mb main memory, and a disk capacity of 40 Gb. 
Cluster nodes are interconnected through a 1 Gb/s Myrinet network. We use the Post-
greSQL 7.3.4 DBMS running on Linux Mandrake 8.0. We generated the TPC-H da-
tabase as specified in [12] with a database size of 1.96 Gb. The fact tables (orders and 
lineitem) have clustered indexes on their primary keys. We also built indexes for all 
foreign keys. As our goal is to deal with ad-hoc queries, no other optimization was 
performed. The database is replicated at each cluster node. 

Our prototype is implemented in Java and some components like the Cluster Query 
Processor (CQP) and parts of the Node Query Processor (NQP) are implemented as 
Java RMI objects. Our implementation exploits multi-threading. Each query is proc-
essed by a different thread of the CQP and NQP. Result composition is done in paral-
lel at each NQP. Only the final global result composition is done by CQP in one of 
the participating nodes. To maximize system throughput and avoid bottlenecks, sub-
query submission and result composition are processed by separate threads. 

In our experiments, each query was run several times. To ease result presentation 
(Figures 2(b), 3(a) and 3(b)), we normalized their mean response time, by dividing 
each mean response time by the greatest response time of its associated query. Re-
sponse time was measured by the client application from the moment it submitted the 
query till the moment it received the final result. We use TPC-H queries Q1, Q12 and 
Q14, each corresponding to a different OLAP query type according to the classifica-
tion in [2]. Q1 accesses only the largest fact table and performs many aggregate op-
erations. Q12 accesses both fact tables with a join between them. Q14 performs a join 
between the largest fact table and one dimension table. We concentrate on those three 
queries because they are most representative of OLAP applications. 
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The partitioning is as follows. For Q1, it is based on l_orderkey since it is the first 
primary key attribute of lineitem table and has few tuples for each value. For Q12, we 
use primary virtual fragmentation for the orders table based on primary key 
o_orderkey and derived virtual fragmentation for the lineitem table based on foreign 
key l_orderkey. For Q14 which accesses only one fact table (lineitem), we employ the 
same strategy as for Q1. 

Figure 2 (a) shows the response time improvement of fine-grained virtual partition-
ing (FGVP) over traditional virtual partitioning (VP) varying the number of nodes. 
With one node, VP performs like sequential execution because there is only one parti-
tion to deal with. In this case, Q12 and Q14 yield better performance with VP than 
with FGVP. By analyzing the query plans generated by PostgreSQL, we observed that 
lineitem table is fully scanned in VP while an index is used in FGVP. Each sub-query 
generated by FGVP accesses only a small number of tuples. So, PostgreSQL decides 
to execute each one using an index as it is not aware that each sub-query is part of a 
larger query. For both strategies, all lineitem tuples need to be processed since there is 
no index on the predicate attributes of the initial query. With a single node, a full scan 
is more efficient in this case. Q1 performs better with FGVP than with VP even when 
only one node is used. This is because it consumes more CPU resources than Q12 and 
Q14 as it has many aggregate operations. In our prototype, we implemented modules 
for collecting intermediate results (from the intermediate queries) and performing the 
required aggregations. With two CPUs per node, query processing (performed by 
DBMS) and partial result aggregation (performed by our middleware) can be parallel-
ized. By producing a large number of sub-queries, FGVP takes full advantage of this 
characteristic. On the other hand, as VP produces only one sub-query per node, it does 
not benefit too much from it. Then, FGVP performs better. With two nodes, only Q12 
still yields better performance with VP. However, Q12 and Q14 start outperforming 
with FGVP. From 4 to 16 nodes, FGVP outperforms VP significantly, yielding an 
improvement factor of 6 for Q12 and Q14 with 16 nodes. This is due to different 
query plans generated for sub-queries produced by each technique. For instance, let us 
analyze the 16-node case. For Q1, VP produces a full scan of the fact table which is 
processed by all nodes, thus making difficult to benefit from the parallel execution. 
With FGVP, the table is accessed through an index and small intermediate results are 
generated. For Q12, VP produces a merge join algorithm [7] while FGVP produces a 
fast main-memory nested loop join (thus avoiding I/O operations) because the parti-
tions are small. For Q14, VP produces full scans of the lineitem table for each (large 
size) virtual partition while FGVP uses an index to access the lineitem table, thus 
reducing response time. 

Figure 2 (b) shows how FGVP scales up with the number of nodes. Q1 and Q12 
have almost linear speedup. Q14 has slightly smaller speedup. In Q1 and Q12, all 
tables are accessed through clustered indexes while in Q14, the part table (200,000 
tuples) is accessed through a non-clustered index which is less efficient. 

Figure 3 shows the performance of FGVP with different numbers of partitions with 
8 and 16 nodes. We observe that the best number (among those that are being 
showed) varies from query to query. Incidentally in these experiments, this number is 
the same for both configurations when we consider the same queries. Other experi-
ments not described here show variations for the same query according to the number 
of nodes employed. This shows the importance of a good partition size estimation and 
dynamic adjustment. 
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5   Conclusion and Future Work 

In this paper, we proposed an efficient solution, called fined-grained virtual partition-
ing (FGVP), to OLAP parallel query processing in a database cluster. The idea behind 
FGVP is conceptually simple. Assuming replication of the database among the cluster 
nodes, queries are rewritten to deal with virtual partitions of the database. Unlike 
traditional virtual partitioning (VP), FGVP produces a number of sub-queries much 
larger than the number of nodes employed for query processing. Consequently, more 
light-weight sub-queries are generated, avoiding full table scans and expensive tem-
porary disk-based structures. FGVP is a significant improvement over static virtual 
partitioning (VP). FGVP can also work with partially replicated databases. 

Our database cluster has a shared-nothing architecture to provide for scale up to 
very large configurations. It supports black-box DBMS using non intrusive, simple 
techniques implemented by Java middleware. Thus, it can support any kind of rela-
tional DBMS. To validate our solution, we implemented a Java prototype on a 16-
node cluster system and ran experiments with typical queries of the TPC-H bench-
mark. The results show that FGVP yields linear, and sometimes super-linear, speedup. 
With 16 nodes, FGVP outperforms VP by a factor of 6 which is excellent. 

As a next step, we intend to introduce dynamic load balancing in FGVP. We also 
intend to investigate a DBMS-independent approach to calculate the number of sub-
queries produced by FGVP. 

Fig. 2. Performance of  VP versus FGVP 
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Fig. 3. FGVP with varying numbers of partitions 
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