
A Large-Scale Digital Library System to Integrate
Heterogeneous Data of Distributed Databases

Mariella Di Giacomo, Mark Martinez, and Jeff Scott

Los Alamos National Laboratory, Los Alamos, NM 87545, USA
{mariella,mlbm,jscott}@lanl.gov

Abstract. The Web has become the primary means for information dissemina-
tion of all kinds; our interest is in dissemination of scientific information from
on-line digital libraries. We have designed a Web application, called SearchPlus,
based on a distributed, scalable, fault-tolerant, and secure architecture, to allow
access to tens of millions of scientific bibliographic records and their citations, in-
tegrating information from multiple heterogeneous data sources, and making this
information available for querying and analysis. A full-scale test-bed environ-
ment has been developed to assess hardware and software configuration and per-
formance. This paper gives the motivations for building such a system, describes
the architecture of our distributed database system, and highlights performance
analyses and subsequent improvements.

1 Motivation

The Los Alamos National Laboratory (LANL) Research Library (RL) [2] focuses on
digital information services. It provides commercially available scientific data, through
Web applications, to LANL scientists as well as several external institutions. One such
application is SearchPlus. The primary objective of SearchPlus is the construction of a
comprehensive distributed database of scientific journal articles – now over 55 millions
– and citation information in a common format – now over 500 million entries, and
providing access to this information to RL customers. Scientists now rely on these re-
sources to meet deadlines, write articles, and vie for funds in highly competitive fields.
Such a critical research resource must exhibit as little service disruption as possible.
To fulfill this requirement, a robust, fast, flexible, scalable, and secure system has been
developed. Commercial products and those deriving from other research projects have
been explored, but no complete solutions have been found. The underlying mass-storage
systems and search engine are commercial products; the rest of the application is home-
grown.

The the architecture design of SearchPlus was driven by the following functional
requirements. 1) Transformation of bibliographic data for scientific publications in dif-
ferent formats into a common XML format, storage for indexing and retrieval. 2) Pro-
cessing of data in a secure environment behind a firewall and making it available to
users through a web application outside the firewall. 3) Providing an information re-
trieval system in the form of a web application with a flexible interface, allowing search
and retrieval of bibliographic data, linking to cited and citing articles, linking to full-text
articles, and providing weekly alerts. 4) Delivering a responsive, interactive service. 5)

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 391–397, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



392 M. Di Giacomo, M. Martinez, and J. Scott

Providing a reliable, fault-tolerant and highly-availability system[1], tolerating no loss
of data. 6) Building a scalable and adaptable system capable of handling weekly up-
dates, new data sources, formats, and content.

This paper makes two main contributions. A first is the description of the archi-
tecture of SearchPlus, which comprises a large collection of software and hardware
components. We argue that the lessons learned may be of wide interest in the research
community. The second contribution is the description of the methodology that has been
used to optimize the performance, enhance the usability, and improve the robustness of
SearchPlus. The rest of this paper is organized as follows: Section 2 outlines the soft-
ware and hardware architecture of SearchPlus; section 3 provides insight into a large
number of optimizations that have been performed on SearchPlus, together with their
impact on the overall performance; section 4 provides concluding remarks.

2 Architecture

This section describes the architecture of the system, focusing on the main components
and the reasons for choosing them. The overall architecture of the proposed environ-
ment is shown in Figure 1, the elements of the hardware configuration are listed in
Table 1.

Fig. 1. The architecture of SearchPlus.

Table 1. Elements of the hardware architecture of SearchPlus.

Processing Nodes Processors Main Memory Disk Storage

12 46 234 GB 7 TB

The physical architecture outside the firewall consists of a load balancer, two front-
end systems running Verity K2 brokers and web applications, two systems running Ver-
ity K2 servers, a system running a MySQL server for an authentication/authorization



A Large-Scale Digital Library System to Integrate Heterogeneous Data 393

database, and a system with a MySQL slave server for the author browse database. The
architecture inside the firewall includes all the components residing outside the firewall
with the exception of the load balancer and MySQL slave server. The MySQL master
server and the XML data processing and K2 indexer system also reside inside the fire-
wall. At a high level, there is a single user interface that provides a unified environment
for both data retrieval and citation linkage. Users can access all the functionalities in-
dependent of the physical architecture of the system. At a low level, the load balancer
accepts client connections and balances them between two front-end systems. Each
front-end server runs the web application and a K2 broker. The application examines a
MySQL database to verify the user authentication and authorization rights to the inte-
grated XML data. If that is successful the application sends a query to the K2 broker
running on the same machine. The K2 broker forwards the query to the appropriate K2
servers which search the collections. The K2 servers return results to the K2 broker
which sorts and returns them to the application. At this point, the application may also
query the author browse and citation database to build bibliography and citation counts.
Java and Apache/Tomcat have been chosen as the platforms to provide web accessibil-
ity. Access to the MySQL databases is handled using servlets and connection pooling.
The main components of the hardware and software architecture on which we will fo-
cus our attention are the following: storage architecture, XML data layout, Verity K2
Enterprise, and MySQL database.

Storage Architecture. Digital library data centers have demanding size, speed, reli-
ability and flexibility requirements. In addition we also need to provide a secure en-
vironment for our data and systems. Our institution has a firewall with services inside
and outside. All the data, systems, and services behind the firewall benefit from better
security. However, we need to run our application and access data from outside the fire-
wall for our external customers. Our choices for storage, file system, and distribution of
processing have been predicated on protecting the data while keeping it easily accessi-
ble. Redundant Arrays of Inexpensive Disks (RAID) and Storage Area Network (SAN)
technologies have been deployed to prevent data lost and provide storage capacity. The
most complicated part of our design has been sharing data among servers located in-
side and outside the firewall. The combination of a SAN and a shared-access file system
gives us the capability to achieve our objective. Sun’s Quick File System (QFS), a Large
Storage Configurations (LSC) file system, is designed to solve file system performance
bottlenecks by maximizing the performance of the file system in conjunction with the
underlying disk technology. QFS is implemented using a standard Solaris virtual file
system interface and can be shared among Solaris environments. Several servers can
read the data distributed in a file system, while another server can write and modify the
same data. Using a shared-access file system, we can build, update, and modify data
inside the firewall, while the web application outside the firewall has read-only access.

XML Data Layout. Scientific articles typically have associated metadata which pro-
vides such information as author, title, abstract, keywords, source, volume, issue, num-
ber of page, etc. An article may also have a bibliography of citations (cited references).
There are two sets of records, stored in XML format: those containing the metadata
for scientific articles and those containing citations for the same articles. A record con-



394 M. Di Giacomo, M. Martinez, and J. Scott

taining the metadata for an article is stored in a single file on a file system reserved
for metadata records. For those articles with a bibliography, citation data is stored in a
single file on a file system reserved for citation records. For citations that have a cor-
responding metadata record in our XML repository, a link is established from the cited
reference to the corresponding metadata record.

Verity K2 Enterprise. Native XML search engines have been evaluated and found to
be underdeveloped, so we have investigated full-text search engines, settling on Verity
K2 Enterprise (K2). Two of the compelling features of K2 are its distributed design and
scalability. The design makes it easy to distribute indexing, search and retrieval, and
administration. The K2 architecture consists of client, broker, server, admin server, and
indexer components. The K2 client, in our case, refers to the Web application, developed
in-house, which is integrated with K2 using Java. A K2 server is the core of the search
and retrieval component. The K2 server contains the search engine for a specific set
of indexed documents (collections) and the viewing service which renders documents
returned by a search. The K2 broker manages communications between K2 clients and
one or more K2 servers. When multiple collections are searched, each K2 Server per-
forms a search against its collections, returning the results to the broker responsible for
merging, sorting, and presenting results to the client. A broker can communicate with
all its K2 servers simultaneously, whether or not they are on the same machine. Broker-
ing enables scaling the system as the amount of information being searched for grows:
brokers can be added according to demand. Similarly, as the number of documents to
search grows, more K2 servers can be added, and collections can be mirrored to balance
an increased load.

MySQL/Relational Database. Why has a relational database been used to store data
related to XML bibliographic records when they are already stored on file systems and
searchable with the Verity search engine? The XML data repository consists of millions
of small files, and backup and recovery of such a file system can be problematic. Mirror-
ing the data stored on disk in a relational database offers the additional benefit of faster
backup time and useful data redundancy. In addition to searching and retrieval, we need
to provide browsing capability on authors and cited and citing articles, and dynamic ci-
tation counts. A relational database provides flexibility to build browsing functionality.
MySQL is an open source relational database. Four reasons for choosing MySQL are
(1) Speed: MySQL has proven to be fast at handling links among 1,435,000,000 rows
of data in several virtual tables; (2) Data storage capabilities: we currently manage over
400GB of data; to limit individual table size, we take advantage of merged tables; (3)
Fault tolerance: As mentioned, we use MySQL in production and as disk-based backup
for our data; (4) Security: MySQL replication is used to protect and update our data;
the master MySQL server runs behind a firewall, while a slave server accesses the data
from outside the firewall, in read-only mode.

3 Performance Analysis and Improvements

In order to determine why application performance was not as good as expected – the
initial response time for a simple search was tens of seconds – we undertook a number of



A Large-Scale Digital Library System to Integrate Heterogeneous Data 395

performance studies. To simplify the process we concerned ourselves with examination
of individual problems. We analyzed each component of the overall architecture: layout
of disk arrays and file systems, memory use, the benefits of running in a 32-bit versus a
64-bit environment, network infrastructure, tools used by the application (MySQL DB,
Verity K2 Engine, Java Virtual Machine, Java compiler, XSL, JSP, Apache/Tomcat)
and of course, the application code itself. We estimated the impact of every component
on performance and scalability and focused our tuning efforts on those which would
provide the most benefit.

3.1 Hardware Architecture

Hardware performance tuning efforts were focused on evaluating the number of
database/collection servers, the number of CPUs per server, the amount of memory
needed, and the number of files per file system. Initial assessments of performance typ-
ically involve processor speed or memory consumption, not transfer rates to and from
disk storage. Since disks are several orders of magnitude slower than RAM, avoiding
access to disk and making necessary access as fast as possible can have a huge impact
on application performance. To solve this problem, we have used RAID technology. If
configured properly (several experiments were performed using different disk striping
strategies), the disk arrays are fast, cheap (considering the amount of data stored) and
safer. We have stored over 7 TB of data, distributed in two categories: the first set con-
sists of millions of small files laid out on file systems, the second of MySQL database
tables. These require different choices for disk configuration. We looked at disk orga-
nization and layout, making sure that all parameters were appropriately tuned for the
type of data stored. To sum up, important decisions impacting the I/O performance were
choosing a correct page size, the unit of disk, the metadata, and data distribution of each
file system. Looking at the network infrastructure, all the servers and storage devices
that must communicate have been connected on the same network path and controlled
by the same network switch to minimize latency and network delays.

3.2 Verity Tuning Optimizations

We knew before the project started that there would be a large number of users access-
ing the application, but we did not have a clear picture of the search distribution. Some
time was spent monitoring how the Verity collections were queried and how many users
access the system in a specific time frame. We also performed a number of optimiza-
tions, mostly on the allocation and caching policies of Verity K2, with improvements
shown in Table 2. As can be seen, many of them had a significant performance impact.

Table 2. Impact of Verity K2 optimizations on the basic performance.

Broker Caching Broker Thread Allocation Sever Caching Server Thread Allocation

20% 15% 22% 18%



396 M. Di Giacomo, M. Martinez, and J. Scott

3.3 MySQL Optimization

Over 400 GB of data are stored in the MySQL database. MySQL server configura-
tion, table structure, table allocation, query handling, concurrency, and replication were
examined for optimization.

Server Optimization. The first component analyzed was the MySQL server, its com-
pilation, and linkage. By using a suitable compiler and appropriate compiler options,
a 10-30% speed increase was realized. MySQL was compiled to take advantage of the
64-bit Solaris architecture and address up to 32 GB of memory, very helpful for query
caching. We observed how MySQL server uses system memory, how the memory is
shared, and how it is used by MySQL threads when performing queries. Several exper-
iments were done tuning the size of the memory buffer that MySQL uses for storing
the indexed data. Several tests were made using different block size for storing and
retrieving the indexed data.

Table Structure Optimization. The first table optimization involved structuring the
data and indexes to take as little space as possible on the disk and in memory. This
results in significant improvements because disk reads are faster and less memory will
be used. Indexing also takes fewer resources if done on smaller columns. The second
optimization was to lay out the tables accessed at the same time on different file systems.
The third and ongoing process of optimization involves running the MySQL table check
mechanism to remove fragmentation and re-sort the indexes after updates. The fourth
performance improvement that has been undertaken, which has not yet been completed,
is restructuring the data inside the tables so that we can take advantage of some of the
newer features of MySQL.

Replication. MySQL replication has been used in our architecture to protect and up-
date our data. When using the MyISAM index mechanism, MySQL has extremely fast
table locking (multiple readers/single writer). The biggest problem with this table type
occurs when one has a mix of a steady stream of updates and slow selects on the same
table. One way to address this problem is to use MySQL replication, where a master
server updates the data in a secure environment and a slave server gets the data from
the master and provides the data to the users. Using this mechanism, we have been able
to reduce the MySQL query time while updates are made on the same data. Replication
also provides a secure environment for the data to be updated. Table 3 summarizes the
impact of the major MySQL optimizations.

Table 3. Impact of MySQL optimizations on the basic performance.

Compilation Tables Block Size Table Structure Buffer Cache Query Cache

15% from 24 to 2 hours 5% 20% 25% 30%



A Large-Scale Digital Library System to Integrate Heterogeneous Data 397

4 Conclusion

The main motivation of SearchPlus has been to develop a powerful, responsive, robust,
and intelligent distributed database environment for knowledge discovery information.
We have described the architecture of our relatively complex, multi-TB system and out-
lined our performance optimization methodology. All the optimizations performed have
reduced the response time of the system to less than three seconds, a substantial perfor-
mance improvement with respect to the original system. SearchPlus is therefore very
responsive and fault-tolerant and is currently used by a sizable number of customers.

References

1. A. Fox and D. Patterson. Self-Repairing Computers. Scientific American, 288(6):54–61, 2003.
2. R. Luce. Evolution and Scientific Literature: Towards a Decentralized Adaptive Web. Nature,

May 2001.


	1 Motivation
	2 Architecture
	3 Performance Analysis and Improvements
	3.1 Hardware Architecture
	3.2 Verity Tuning Optimizations
	3.3 MySQL Optimization

	4 Conclusion
	References



