
M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 436–443, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Exposing MPI Applications as Grid Services

E. Floros and Y. Cotronis

National and Kapodistrian University of Athens,
Department of Informatics and Telecommunications

{floros,cotronis}@di.uoa.gr

Abstract. This paper presents a Grid Services programming framework for the
virtualization and composition of mesh-based high performance MPI applica-
tions and their interaction with other Grid Services. Applications are abstracted
using a Uses / Provides port scheme where ports represent access points to data
quantities. Quantities are modeled using Service Data Elements and Grid Ser-
vice Handles. Clients can query services based on provides quantities and sub-
scribe to related notification sources. Service clients execute MPI applications
through a customized application management service, passing requirements
regarding the mesh-topology and the execution environment. The framework
defines and provides reference implementations of core portTypes used to in-
stantiate and control the execution of a parallel application. Finally services can
be composed using their Uses / Provides Quantities based on service workflow
descriptions.

1 Introduction

The advent of grid computing has stimulated development of a new breed of applica-
tions targeted for deployment in highly distributed and heterogeneous computing
platforms, exploiting disperse computational resources. Nevertheless practice has
proved that Grids are hard to program and currently a universal Grid programming
model remains a highly desired goal. While it may be possible to build grid applica-
tions using established programming tools, they are not particularly well-suited to
effectively manage flexible composition or deal with heterogeneous hierarchies of
machines, data and networks with heterogeneous performance [8].

Recently there is a shift of grid programming towards the Service-oriented para-
digm for application development. The Open Grid Services Architecture (OGSA) [3]
leverages Web Service technologies and introduces the notion of Grid Services. A
Grid service is a Web service that conforms to a set of conventions relating to its
interface definitions and behaviors [13].

An area of interest for applying Grid Services is the virtualization of legacy high-
performance applications. Virtualization is a common approach for exposing and
extending the functionality of software assets. Various approaches have been intro-
duced applying primarily Object Based and Service Oriented technologies. Among
them Common Component Architecture (CCA) defines a component model tailored
towards high performance applications [1]. XCAT [10] extends CCA by introducing a
Web Services based framework extensively utilizing XML and outlining Grid-
oriented Application Factories. XCAT is a predecessor to OGSA providing different

Exposing MPI Applications as Grid Services 437

service functionality and semantics. Pardis [6] and GridCCM [12] propose CORBA-
based frameworks and extensions to IDL and ORB. In these frameworks component
stubs are used to implement parallel servers and clients, each instance corresponding
to a single MPI processes.

One class of such legacy applications is the high performance parallel applications
developed using MPI [11] and in particular mesh based simulation models like Mete-
orological, Hydrological, Pollution, Fire Propagation etc. Such models are usually
developed as isolated MPI applications, typically applying the SPMD programming
paradigm. Data processed form 2D or 3D meshes which map directly to real-world
coordinates. Models most of the times can benefit from their interoperation (for in-
stance a Hydrological model can interact with a Meteorological model) to produce
more accurate results. The composition of these applications is not a straightforward
process since source codes are developed by separate teams which are difficult or
unwilling to cooperate. As a result ad-hoc approaches are followed.

In this paper, MPI applications are exposed as OGSA Grid Services. The virtual-
ization of an MPI application with Grid Service semantics and tools introduces new
potentials since there are obvious benefits both in terms of functionality and interop-
erability. Programmers can use the well defined value-added infrastructure of Grid
Services to search for applications (e.g. in UDDI repositories), retrieve formal de-
scriptions in a standard defined XML (WSDL) document and easily bind their func-
tionality to diverse clients. These client applications can be developed in various lan-
guages relieving the programmer from the burden of understanding the inner engi-
neering of the application or even of the MPI message-passing semantics per se. Di-
verse clients may leverage the capabilities of high performance applications and util-
ize high-end expert code which till now was isolated due to inherent complexity of
MPI and lack of high-level composition semantics. Moreover multiple MPI services
can be put together using workflow-based composition, in order to exchange data and
interoperate.

The rest of the paper is organized as follows. Section 2 presents the proposed MPI
application virtualization model and introduces the notion of Uses and Provides
Quantities. Section 3 describes the inner details of the framework and provides exam-
ples of simple client-service interaction and more complex, workflow-like service
composition. Finally section 4 provides conclusions and future directions of this re-
search.

2 Virtualization of MPI Applications

To demonstrate the framework we use a real life application scenario based on Flood
Forecasting [5]. In this scenario three different models cooperate, in a cascading pat-
tern, to execute a flood crisis application (Fig. 1). A Meteorological Model (parallel)
provides quantitative precipitation forecasts to a Hydrological simulation (sequential)
which in turn feeds a Hydraulic (parallel) simulation with Hydrographs. The three
models interoperate to provide weather forecasts, discharge forecasts and flood sce-
narios.

438 E. Floros and Y. Cotronis

Fig. 1. Sample scenario with three cascading simulation models

2.1 Data-Centric Virtualization

In order to expose a parallel MPI application as a Grid Service one has to bridge two
different distributed programming worlds: the service-oriented, operation-centric
world of OGSA Grid Services and the two-sided communications world of MPI. The
common denominator for these two approaches is the data that are being exchanged
between two communication parties. In service-oriented and object-oriented ap-
proaches like OGSA, Web Services, CORBA etc., data are bound to operations that
receive them as method parameters and return them as results of method execution. In
MPI, messages do not trigger explicit method calls but carry data and also act as syn-
chronization mechanism.

We can follow two approaches to wrap a Grid Service around the MPI application:
wrapping of processes or wrapping of data. In the first approach the Grid Services
runtime interacts directly with the processes that comprise the MPI application. This
requires the Grid Service processes or at least a subset of them, to immerse inside the
MPI context that the MPI processes define and be an MPI program itself.

A more general approach is to have the Grid Service directly access the output data
that a given MPI application produces. In this approach the implementation of the
service is independent of the implementation and execution details of the underlying
MPI system. In this paper we have followed the later approach since not only is the
more general one but also because the current implementations of OGSA support
mainly Java based servers, which cannot participate in an MPI communication world.

We abstract an MPI application by defining the following: The application imple-
ments an algorithm (e.g. a Meteorological or Hydraulic model) that accepts as input a
set of external data in the form of uses quantities executes and produces a set of result
data in the form of provides quantities. For instance Precipitation is a Provides Quan-
tity of the Meteorological model and a Uses Quantity of the Hydrological model.

The application may also utilize a set of meta-data that define execution require-
ments of the algorithm and other behavioral aspects and execution details. Uses and
Provides Quantities may be available in various forms and mediums: a simple binary
or text file in the local file system, a remote file replicated in various hosts and con-
trolled by a replication service, a database in a network available RDBMS or a net-
worked server application that provides or consumes data by exchanging them in a
message-passing fashion.

Data sources

Quantitative Precipi-
tation Forecasts

Hydrographs

Weather forecasts,
Discharge forecasts
and Flood Scenar-

Meteorological
simulation Hydrological

simulation Hydraulic
simulation

Exposing MPI Applications as Grid Services 439

Following the above approach a Grid service can describe public interfaces of the
MPI application by exposing the uses and provides quantities of the application, to-
gether with the required meta-data for execution. The implicit operation that the MPI
application implements, and is being exposed as a Grid Service operation is the exe-
cution of the algorithm.

2.2 Modeling of Provides and Uses Quantities

We model Provides Quantities using Service Data Elements (SDEs). Service Data is a
structured collection of information that is associated to a Grid Service. This informa-
tion is easy to query, so that Grid Services can be classified and indexed according to
their Provides Quantities. Although originally intended to provide attributes and meta-
information of a Grid Service, the SDE conception is in accordance with the Provides
Quantity notion.

For example in the Flood crisis scenario the Meteorological model may provide a
Precipitation Quantity which is comprised by precipitation related information on a
specific 2D x-y axis. The Precipitation SDE will have the following simplified XML
Schema definition (XSD):

<complexType name="Precipitation">
 <complexContent>
 <extension base=”Quantity2D”>
 <sequence>
 <element name="value" type="float" maxOccurs=”unbounded”/>
 <element name=”time” type=”float” maxOccurs=”unbounded”/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

The above defines a Provides Quantity named “Precipitation” which extends a
framework defined Quantity2D SDE with two additional fields: the value of precipita-
tion and the relevant time step. Quantity2D defines an abstract quantity that is en-
closed in the mesh rectangle (xmax,ymax) and (xmin,ymin):

<complexType name="Quantity2D">
 <sequence>
 <element name=”xmax” type=”float” maxOccurs=”unbounded”/>
 <element name=”ymax” type=”float” maxOccurs=”unbounded”/>
 <element name=”xmin” type=”float” maxOccurs=”unbounded”/>
 <element name=”ymin” type=”float” maxOccurs=”unbounded”/>
 </sequence>
</complexType>

A service may implement a variable number of Provides Quantities. Clients can
search for services which provide specific quantities and acquire a reference to them
(in the form of a GSH). An implementation code (e.g. a JavaBean if Java is the target
language) is generated automatically by the above XML. The service programmer has
to customize it and extend it to retrieve and prepare the Quantity information from the
application output data. In most cases the MPI application source code should not
require any modification to be used from the service. The programmer having knowl-
edge of the result dataset format can derive with little effort the requested data and
return them to the client.

440 E. Floros and Y. Cotronis

A Uses Quantity is modelled using a {GSH, QuantityName} pair that uniquely
identifies the name of the quantity (e.g. “Precipitation”) and the grid service that pro-
vides it. For instance the Precipitation Uses Quantity of the Hydrological application
may have the form: {http://www.gsmpi.org/models/Meteo, “Precipitation”}

An application (simple client or another grid service) may define zero or more
{GSH,QuantityName} pairs whose values can be set during the preparation of the
application or dynamically during the execution time. A null value for a given GSH
means that this Uses Quantity is not available and the algorithm should perform all
required computations without taking advantage of them.

3 Programming Framework

3.1 Standard PortTypes

The framework defines and implements a set of standard portTypes and respective
operations, which can be extended by the application developer. These portTypes are:

MPIAppPrepare: Provides the required functionality that handles pre-execution
details of the MPI application, such as the setup the execution environment, the defi-
nition of the application topology, the definition of special requirements for computa-
tional resources (memory, cpu, disk space) etc.

MPIRun: Provides the MPIRun::mpiRun operation that is invoked in order to actu-
ally start the MPI application. This operation consults the requirements defined previ-
ously, prepares the underline MPI system and executes the mpirun command. Multi-
ple versions of the operation can be implemented in order to support different MPI
environments (e.g. MPICH, LAM etc.).

MPIAppMonitor: Implements basic operations for job monitoring and management.
Operations can be used to query the state (starting, running, completed and aborted)
of the application and control its life-cycle (kill or restart the application).

3.2 Notifications

The framework extensively utilizes the Notification facilities provided by Grid Ser-
vices. Clients can register as notification sinks requesting from the service to be in-
formed when a Provides Quantity has changed; usually when a computation has fin-
ished and the Provides Quantity is ready to be retrieved, or when intermediate results
are available. When a Provides Quantity is changed the event is propagated to all
interested parties. Clients are able to pull available results by sending an appropriate
request to the SDE. Programmers may also choose to implement a quantity push
schema where the service application itself assumes the responsibility to communi-
cate the event together with the relative data to the client application. This ability is
especially useful for supporting flexible service composition based on uses / provides
quantities.

Exposing MPI Applications as Grid Services 441

3.3 Programming in the Framework

The framework is applied as follows: First the programmer writes the GWSDL de-
scription of the service and the XSDs of the Provides Quantities. The service extends
one or more of the framework’s portTypes to generate a custom MPI Application
Management Factory. The programmer edits and extends the SDE stubs (which in
Globus Toolkit 3 are materialized in the form of JavaBeans) generated from the XSD
specifications of the Provides Quantities. This is the most important and laborious
part of the framework. The programmer has to implement in the JavaBean the data
access logic in order to extract and deliver from the complete output data set the quan-
tity information that this SDE provides. The service is then deployed in a Grid Ser-
vices container (e.g. Apache Tomcat). The stubs generated from the GWSDL file are
used to implement service clients.

Fig. 2. Overview of Client / Service interaction within the framework

Fig. 2 depicts a sample application execution. A client application uses the Meteo-
ModelFactory to instantiate a new MeteoModel. Then it passes the initialization pa-
rameters of the application. For instance a client may request a 2D dimensional mesh
topology within a given range of X and Y coordinates. The client is not concerned
with how many processes will be created and where. These details are derived from
the requested mesh topology and are handled by the service. Additional requirements
may be passed such as a time limit of execution or minimum model error.

The application is executed by calling MPIRun::mpiRun operation. Currently the
service takes the initial requirements and produces an RSL file to be passed as a pa-
rameter to MPICH-G2 mpirun script. Issues of security and credentials delegation are
handled using GT3 transport level and message level security.

The client may poll periodically the status of the application using
MPIAppMonito::mpiAppGetState operation or can be notified using Notifications
when results are available. To avoid having to extend from all these portTypes
mpiRun can use default execution values thus an application can be started by extend-
ing only the MPIRun portType and issuing a single call to the MPIRun::mpiRun.

MeteoModel

mpirun

MPI Processes Input Data Output Data

MPI World

Precipitation
Quantity
(SDE)

Client Initialize
Service and

get GSH Run model
and control

job
Notifications

MeteoModel
Factory

Creates Instance

Precipitation
Data

Derived Data

442 E. Floros and Y. Cotronis

Moreover a client may request premature end of an application (MPIAppMoni-
tor::mpiAppKill operation) either by keeping any intermediate results up to then or by
flashing all output rendering them useless in order to start a new simulation.

Since Grid Services can be state-full many clients can dynamically acquire a refer-
ence of the running MeteoModel instance, connect and retrieve results from the exe-
cuting model. For example there may be two service clients the first being the Hydro-
logical model and a second visualization client that retrieves and displays graphical
precipitation images.

3.4 Service Composition

The described framework facilitates the composition of virtualized MPI applications
with other Grid Services (either MPI or non-MPI). Composition can be performed
both in space and in time [4]. In the first case the two composed services either have
prior knowledge of the Uses Quantities each other exposes or the {GSH,QtyName}
pair is passed during the execution of the service as a parameter (using for instance a
Perl script to instantiate them).

Fig. 3. Services composition through Uses / Provides Quantities

The framework can further be extended to support workflow based composition
(composition in time). Currently, workflow systems for Grid and Web Services are
evoking a high degree of interest, with initiatives such as WSFL [9], and Grid Ser-
vices Flow Language (GSFL) [7] investigating the various aspects of workflow in
their respective domains. Our approach of Quantities-based composition resembles
the GSFL notificationModel which is the recommended solution for peer-to-peer,
high-performance inter-service bulk data exchange.

In the example (Fig. 3) a simple workflow engine parses a description of the ser-
vice composition in an XML format, extracts the Uses/Provides Quantities informa-
tion and instantiates the services by passing the required Uses Quantities information.

Meteo Hydrological

XML Workflow
Description

Precipitation
Provides Quantity

script

Hydraulic

Data

Data

Parse Workflow

Service instantiation

{GSH, QtyName}

Workflow Engine:
Instantiates services and
passes Uses Quantities
information

Precipitation
Uses Quantity

Notifications

Hydrograph SDEs

SDE

Exposing MPI Applications as Grid Services 443

4 Conclusions and Future Work

In this paper we have presented a programming framework for exposing high-
performance parallel MPI applications as OGSA Grid Services. We have introduced
the notion of Uses and Provides Quantities which are used to describe an abstract
application interface, permit data exchange between applications and facilitate the
composition of two or more applications in a service workflow.

The framework is currently work-in-progress and is being implemented on top of
Globus Toolkit 3 as the Grid Services middleware and MPICH-G2 as the MPI execu-
tion environment. The recent refactoring of OGSA that has led to the introduction of
the Web Services Resource Framework (WSRF) [2] is pushing for a similar refactor-
ing of all research activities in this area. As a result our imminent steps will be to
adapt our framework to WSRF semantics. Moreover, we are evolving the framework
at various levels: Application execution semantics are extended to support interactiv-
ity and check-pointing. Service composition is enhanced with formal workflow syntax
and extended to support semantic information and compatibility assertions. Further-
more, we investigate the capability of Web Services and MPI programs to co-operate
at the process level. Finally, we plan to further evolve the dynamic capabilities of the
framework especially in the context of dynamic workflow transformations.

References

1. Armstrong R., Gannon D., et al: Towards a Common Component Architecture for High-
Performance Scientific Computing. 8th IEEE International Symposium on High Perform-
ance Distributed Computation, August 1999.

2. Czajkowski K. et al.: The WS-Resource Framework (WSRF) v1.0, GGF, March 2004.
3. Foster I., Kesselman C., Nick M. J., Tuecke S.: The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration. Open Grid Service Infrastructure
WG, Global Grid Forum, June 2002.

4. Gannon D., et al..: Grid Web Services and Application Factories. In: Grid Computing:
Making the Global Infrastructure a Reality, p251-p264. Willey, April 2003.

5. Hluchy L. et al.: Problem Solving Environment for Flood Forecasting. 7th World Multicon-
ference on Systemics, Cybernetics and Informatics (SCI 2003), July 2003.

6. Keahey K. Gannon D.: PARDIS: A Parallel Approach to CORBA. IEEE 6th International
Symposium on High Performance Distributed Computing, August 1997.

7. Krishnan S. Wagstrom P. von Laszeswki G.: GSFL: A Workflow Framework for Grid Ser-
vices. Argonne National Laboratory, Preprint ANL/MCS-P980-0802, August 2002.

8. Lee C., Talia D.: Grid Programming Models: Current Tools, Issues and Directions. In: Grid
Computing: Making the Global Infrastructure a Reality, p555-p576, Wiley, April 2003.

9. Leymann F. Web Services Flow Language (WSFL 1.0), IBM Software Group. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May 2001.

10. Madhusudhan G., Krishnan S., Slominski A., Merging the CCA Component Model with
the OGSI Framework. Proc. of CCGrid2003, May 2003.

11. Message Passing Interface Forum: MPI: A Message Passing Interface Standard, June 1995.
12. Perez C, Priol T., Ribes A.: A Parallel CORBA Component Model, INRIA/RR-4552.

September 2002.
13. Tuecke S. et al.: Open Grid Services Infrastructure (OGSI). Version 1.0, Global Grid Fo-

rum, June 2003.

	1 Introduction
	2 Virtualization of MPI Applications
	2.1 Data-Centric Virtualization
	2.2 Modeling of Provides and Uses Quantities

	3 Programming Framework
	3.1 Standard PortTypes
	3.2 Notifications
	3.3 Programming in the Framework
	3.4 Service Composition

	4 Conclusions and Future Work
	References

