
SCISM vs IA-64 Tagging:
Differences/Code Density Effects

Georgi Gaydadjiev and Stamatis Vassiliadis

Computer Engineering Lab, EEMCS, TU Delft, The Netherlands
{G.N.Gaydadjiev,S.Vassiliadis}@EWI.TUDelft.NL

http://ce.et.tudelft.nl/

Abstract. In this paper we first present two tagging mechanisms; the SCISM
and IA-64; thereafter we describe the mapping of IA-64 ISA to a SCISM con-
figuration without changing or reassigning the IA-64 instructions to preserve the
original architectural properties. Under this limiting SCISM scenario, opcode re-
assignment will improve even more the SCISM performance, it is shown that
SCISM tagging will significantly improve (between 21 and 29%) static code den-
sity. The results are based on analysis of various SPECINT2000 executables.

Keywords: Instruction Tagging, Instruction Level Parallelism, SCISM, IA-64.

1 Introduction

Tagging has been used extensively by microarchitects and designers as an efficient
mechanism to facilitate implementation and potentially improve the performance of
processors. Tagging for example has been used to enumerate and manage the hardware
resources [1], to handle interrupts, e.g. [2], speculative execution (see for example [3],
and to facilitate concurrent instructions routing see for example [4]. Instruction tag-
ging for instruction level parallelism has been introduced for two main reasons namely:
to reduce the complexity (and the cycle time), mostly the decode stage, of a pipelined
machine implementation, and to potentially improve instruction level parallelism (ILP).

In this paper we analyze and compare the two ILP tagging mechanisms, SCISM [5]
(the first known machine organization that employs tagging with the mentioned ILP
characteristics) and IA-64 [6], [7] tagging mechanisms and provide evidence suggesting
that the SCISM tagging provides some benefits when compared to IA-64 tagging. In
particular we investigate and show the following: We provide evidence indicating that
the SCISM tagging is a superset of the IA-64. We consider the side effects of tagging on
code densities and show that the SCISM tagging of IA-64 instructions regarding code
densities is clearly superior to the IA-64 for static code. In particular it is shown that the
SCISM tagging reduces the IA-64 code size for SPECINT2000 benchmarks between
21% and 29%.

The paper is organized as follows. Section 2 gives a short description of IA-64 ar-
chitecture1 with the main focus on the template bit field role. In addition, the SCISM
organization is described with emphasis on tags and their functionality. Section 3 maps

1 We note that in this paper we use the original definition of the term of architecture as described
by [8].

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 571–577, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



572 G. Gaydadjiev and S. Vassiliadis

the IA-64 instruction set architecture to SCISM and shows how the original IA-64 as-
pects are preserved. In the same section the results concerning the static code density
are discussed and the discussion is concluded.

2 The IA-64 and SCISM Tagging

IA-64 uses bundles as its compound instruction format. A bundle consists of three in-
struction slots and a template field. Each bundle in IA-64 is 128-bits long. Figure 1(a)
shows the bundle’s format. I0, I1 and I2 represent the three instructions (41-bits each),
while template (tag) is a 5-bit wide field. The template information is used for de-
coding, routing (dispersal) and ILP. Instruction groups can be seen as chained bun-
dles in the absence of stops. The boundaries between instruction groups correspond
directly to the instruction level parallelism (ILP) in a particular IA-64 implementation.

I2 I1 I0 template

(a)
I1 T I2 T I3 T I4 T

(b)

Fig. 1. IA-64 and SCISM bundle formats.

IA-64 has five instruction slot types cor-
responding to the different execution
unit types - Memory (M), Integer (I),
Floating-point (F), Branch (B) and Long
(extended) (L+X), or in shorthand (M,
I, F, B, and L). IA-64 instructions are
divided among six different instruction

types - ALU (A), Memory (M), Integer (I), Floating-point (F), Branch (B) and Long
(extended) (L+X), abbreviated as (A, M, I, F, B, and L). An interesting detail is that
instruction of A-type, e.g. integer add, can be scheduled to either I or M execution unit.
The L+X type uses two instruction slots and executes on I-unit or on B-unit. Due to
the limited number of bits not all instruction triples are supported. There are 12 ba-
sic template types (each with two versions with stop on the bundle end or not): MII,
MI I, MLX, MMI, M MI, MFI, MMF, MIB, MBB, BBB, MMB and MFB, where “ ”
(underscore) indicates a stop inside the bundle (not at the bundle boundaries).

OPERATION ALU Function Operand Representation Requires

Load Complement (LCR) 32-b signed addition Two’s complement Adder

Load Positive (LPR) 32-b signed addition Two’s complement Adder

Load Negative (LNR) 32-b signed addition Two’s complement Adder

Load Register (LR) 32-b signed addition Two’s complement Adder

Load and Test (LTR) 32-b signed addition Two’s complement Adder

AND (NR) bitwise logical AND Binary Logical

OR (OR) bitwise logical OR Binary Logical

EXCLUSIVE-OR (XR) bitwise logical EX-OR Binary Logical

Add (AR) 32-b signed addition Two’s complement Adder

Subtract (SR) 32-b signed addition Two’s complement Adder

Add Logical (ALR) 32-b unsigned addition Unsigned Binary Adder

Subtract Logical (SLR) 32-b unsigned addition Unsigned Binary Adder

Compare Logical (CLR) 32-b unsigned addition Unsigned Binary Adder

Compare (CR) 32-b signed addition Two’s complement Adder

Fig. 2. RR-Format Loads, Logicals, Arithmetics
and Compares operations [9].

In SCISM, instructions are catego-
rized according to hardware utilization
not op-code description. An obvious im-
plication of this is that the number of
rules needed to determine parallel exe-
cution depends on the number of cate-
gories, rather than on the number of in-
dividual instructions. Given that a cate-
gory comprises of multiple instructions
used by a single hardwired unit, the dif-
ferences among category members are
considered as “trivial” and are resolved
by the hardware by means of some con-
trol signal or by minor hardware modi-
fications. For example in an implemen-
tation [9] a set of fourteen IBM 370
ISA [10] operations is presented that be-
long to a single category and are executed



SCISM vs IA-64 Tagging: Differences/Code Density Effects 573

by the same hardware (ALU) (see Figure 2). Another categorizations are obviously pos-
sible. Two different tagging mechanisms have been reported [11], [5], [12]. The first
mechanism [5] requires �log2(n)� bits, with n being the number of instructions to be
executed in parallel. The second (original) mechanism requires only one additional bit
as depicted in Figure 1(b) for an example 4 instructions wide parallel machine, with I1,
I2, I3 and I4 being the original instructions. In Figure 1(b), all instructions Ij are in
their original form and T ε {0,1} represent the tags. The SCISM approach implies full
binary compatibility, allowing straight-forward legacy code execution and paralleliza-
tion. An interesting implicit property associated with the SCISM tagging is that it is
allowed, contrary to the IA-64 tagging, to branch in the middle of a compound instruc-
tion allowing code compaction (complete elimination of nops and removing the need
of branch alignment) [5]. Only tags are added to code thus if SCISM tagging is applied
to existing code the original code remains unchanged. As a consequence there are no
side effects such as branch target calculations.

3 Tagging Effects on Code Size

This section begins by showing how IA-64 instructions can be mapped onto SCISM
without strict code mapping (no opcode space re-assignment). This straight-forward
mapping is not an optimal approach for SCISM due to the shared major IA-64 opcodes,

I1 rr T I2 rr T I3 rr T

(a)
I

j
1 1 I

j
2 1 I

j
3 1 Ik

1 1 Ik
2 0 Il

1 ...

(b)
Fig. 3. Instruction format and bundle chaining.

but is a quick way to demon-
strate the SCISM potential and
create a base for comparison.
It should be taken into account
that this is also the worst-case
scenario with respect to SCISM

when investigating binary code density. To transform IA-64 to SCISM code a three-way
SCISM organization is assumed. This is to create an IA-64 bundle which corresponds to
a SCISM compound instruction with a length of three. Please note that the discussion on
code density differences is unrelated to any particular IA-64 implementation. To clar-
ify this: the Itanium2 dispersal window (two bundles) corresponds to a six-way SCISM
compound instruction leaving the code size differences between the two approaches un-
changed. The SCISM organization by its definition is not restricted to certain number of
instruction combinations (24 out of 32 possible when using 5 bits) while IA-64 is. The
three-way SCISM compounding requires three tag bits for stop indication (see Section
2), leaving two out of five IA-64 template bits unused. On the other hand, the template
removal will require additional information about the functional unit to be added to
each individual instruction. In IA-64 all of the instructions are executed by one of the
four execution units types: M, I, F or B. The two “remaining” IA-64 instruction types
(A-type and X-type) are also executed by one of those execution units types (A-type
by I or M and (X-type) by I or a B unit). This is why the additional bits are coupled
to the designated functional units instead of the instruction types. This requires two ad-
ditional bits for each basic instruction (or 6 for the total compound instruction). The
SCISM instruction format for IA64 is depicted in Figure 3 (a). As stated earlier three
single bit tags are needed to express the IPL (shown as T in the figure). In addition,



574 G. Gaydadjiev and S. Vassiliadis

(a)

(b)

Fig. 4. IA-64 and SCISM code (build tree function of gzip).

another two bits for routing (rr) per instruction are used to provide information about
the targeted functional unit. Stated differently this is a 3-bit SCISM tagging [11]. The
three 41-bit long IA-64 instructions are unmodified in their original form. Putting it
together, SCISM instructions become 44-bit long (including tagging), hence the three
way compound instruction will become 132 bits.

The template bits are not needed, since bits are added to indicate the position where
a compounding is ending. When “wider” than the compound instruction implementa-
tion is used can be easily implemented in SCISM. Figure 3(b) shows an example of how
5 parallel instructions can be marked in the proposed 3-way SCISM organization, where
Ij , Ik and I l represent three subsequent SCISM compound instructions. To clarify the
discussion above Figure 4(a) depicts a piece of the build tree function code from the
IA-64 binary of the gzip executable. In Figure 4(a) the left column shows the original
IA-64 code, next column is the equivalent SCISM code, the TAG column represents the
tagbits, and the routing information is shown in the last column. The encoding is for:



SCISM vs IA-64 Tagging: Differences/Code Density Effects 575

memory unit (M) = 00, and integer unit (I) = 01. Figure 4(b) shows a potential memory
organization for IA-64 compounded instructions where the compound instructions are
136 bits long (the original 128 bit bundle plus an additional byte). Please note that this
is one out of many implementations possible that can facilitate the proposed organi-
zation. The Template information of the original IA-64 bundle is replaced by the tags
corresponding to the three instructions (filled with two don’t care bits - ‘x’), while the
additional byte is addressed in parallel with the modified IA-64 bundle to access the
routing information (along with the two additional spare bits). Furthermore, as in the
case of S/370 example, except for the tagging, IA-64 instructions have not been modi-
fied preserving all the instruction properties. In order to find the improvement in code
size we investigated the SPECINT2000 executables. Since the compiler optimizations
may play significant role in the IA-64 approach, the effects of different compilers on
code size where investigated in [13]. The differences on code sizes produced by differ-
ent compilers, e.g. gcc and Intel where found marginal, so the results in this paper are
independent on the compiler technology. The benchmarks where compiled using the
CPU2000 default makefiles (optimization levels). The compilation was performed in-
side Native User Environment (NUE) developed at the Hewlett-Packard Labs [14]. This
environment emulates a Linux/ia64 system, more precisely Itanium2, and was consid-
ered sufficient since the static binary code investigation was the primer concern. We
considered only the code segments of the benchmark executables, leaving all other pro-
gram segments out. The results are presented in Figure 5. The first column shows the
total number of instructions involved, e.g. the complete code segment in instructions
(not bundles). The second column in each pair shows the percentage of nop instruc-
tions found. It was found that for all of the benchmark executables approximately one
third of the operations are nop operations. The 255.vortex benchmark was found as the
one with the lowest nop count (26%), however this is an exception.

Fig. 5. IA-64 NOP utilization SPECINT2000.

The comparison on the code segment size between the IA-64 (Itanium2) and the
SCISM is presented in Figure 6. The IA-64 results where estimated as follows: the total
number of bundles (instead of instructions) was used, since the bundle size is predeter-
mined to 128 bits it is a simple procedure to determine the code segment size in number
of bits. In case of SCISM, the number of instructions was used and the worst-case in-
struction length of 44-bits was assumed. An even more restrictive scenario for SCISM



576 G. Gaydadjiev and S. Vassiliadis

Fig. 6. IA-64 vs SCISM code size SPECINT2000.

assumes instructions to be byte rather than nibble addressed. This can be done with
the addition of four more tag bits per bundle. Strictly speaking these four bits are not
needed and can be used to improve performance and/or the hardware design. They will
add however to the storage requirements. The results are presented in Figure 6, where
the first column represents the number of bits (of the code segments) for the original
benchmark executables. The second column shows how the code segment size when
the SCISM approach is applied and the ratio is expressed in percent of the original size.
The third column represents the byte addressed SCISM scenario when the instruction
bundles are expanded to 136-bits by adding a second nibble. It can be seen that IA-64
code size for the SPECINT2000 executables will be compacted by 23% - 29% for the
non byte addressed SCISM and 21% - 27% for the byte addressed SCISM.

4 Conclusions

This paper we have shown how the SCISM tagging can be applied to IA-64 instruc-
tion set. A straight-forward and hence very restricted scenario in respect to SCISM
was applied. All important IA-64 properties where preserved with a marginal increase
in opcode length. On the other hand significant static code size reduction was shown
(between 21 and 29 %) due to nops elimination.

References

1. Tomasulo R. M., “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM
Journal, vol. 11, pp. 25–33, Jan. 1967.

2. Kemal Ebcioglu, “Some Design Ideas for a VLIW Architecture for Sequential Natured
Software,” in Proceedings of IFIP WG 10.3 Working Conference on Parallel Processing.
Apr. 1988, pp. 3–21, Elsevier Science Publishers.

3. M. D. Smith, M. Lam, and M. A. Horowitz, “Boosting beyond static scheduling in a super-
scalar processor,” in Proceedings of the 17th Annual Symposium on Computer Architecture,
1990, pp. 344–354.

4. Marketing Brochure, The Series 10000 Personal Supercomputer, Apollo Computer Inc.,
Chelmsford, MA, 1988.

5. S. Vassiliadis, B. Blaner, and R. J. Eickmeyer, “SCISM: A scalable compound instruction
set machine,” IBM J. Res. Develop., vol. 38, no. 1, pp. 59–78, Jan 1994.

6. J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Zahir, “Introducing the IA-64
architecture,” IEEE Micro, pp. 12–23, Sep-Oct 2000.



SCISM vs IA-64 Tagging: Differences/Code Density Effects 577

7. Intel Corporation, Intel IA-64 Architecture Software Developer’s Manual Vol.3, Rev. 1.0,
2000.

8. Gerrit Blaauw and Frederick Brooks Jr., Computer Architecture, Addison-Wesley, One Jacob
Way, 1997.

9. S. Vassiliadis, J.E. Philips, and B. Blaner, “Interlock collapsing ALUs,” IEEE Trans. Com-
puters, vol. 42, no. 7, pp. 825–839, July 1993.

10. IBM Corporation, IBM enterprise System Architecture/370 Principles of operation, 1989.
11. S. Vassiliadis and B. Blaner, “Concepts of the SCISM organization,” Technical Report

TR-01 C209, IBM Glendale Laboratory, Endicott, NY, Jan 1992.
12. R.J. Eickemeyer, S. Vassiliadis, and B. Blaner, “An in-memory preprocessor for SCISM

instruction-level parallel processors,” Technical Report TR-01 C407, IBM Glendale Labo-
ratory, Endicott, NY, May 1992.

13. G. N. Gaydadjiev and S. Vassiliadis, “What SCISM tagging can do that IA64 can not,” Tech.
Rep. CE-TR-2004-02, TU Delft, 2004.

14. Stephane Eranian and David Mosberger, “The making of linux/ia64,” HPL, Aug. 1999.


	1 Introduction
	2 The IA-64 and SCISM Tagging
	3 Tagging Effects on Code Size
	4 Conclusions
	References



