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Abstract. The deteriorating effect of old history in asynchronous it-
erations is investigated on an application based on the specialization
of parallel variable distribution approach of Ferris and Mangasarian [4]
to linear least squares problem. A partially asynchronous algorithm is
developed which employs a combination of synchronization, a relaxation
parameter and a certain form of overlap between subproblems. It is shown
by numerical experiments that this combined effort to decrease the ef-
fect of old history is more effective than the single attempts considered in
[9,11].

The aim of the paper is to provide an efficient method to compensate for the
deteriorating effect of old history on the convergence of asynchronous iterative
methods. The issue of old history is investigated on an application based on
the specialization of parallel variable distribution (PVD) approach of Ferris and
Mangasarian [4] to linear least squares problem.

We have seen in [9,11] that in the implementation of totally asynchronous
iterations on linear least squares problems convergence is deteriorated due to
the existence of old history in the system. Yet, some measures can be taken to
reduce the effect of old history. It has been observed that increasing the number
of processors increases the effect of old history, whereas introducing some form
of synchronization, either in the form of local synchronization, or as barrier
synchronization decreases the deterioration. The use of a relaxation parameter
as a line search also improves the convergence rate.

Here we will formulate a partially asynchronous algorithm that combines
most of the methods studied in [9,11] plus a certain form of overlap to de-
crease/eliminate the effect of old history. This new algorithm is based on our
observations in our former studies and the work of Dennis and Steihaug [2]. We
will see that the new algorithm eliminates the deterioration in convergence rate
observed due to the effect of old history.

In the following, we first give some notations and definitions that are used
throughout the paper. In Sect. 2 we introduce the concepts of planar search and
expanded blocks. The final algorithm is outlined and explained in Sect. 3. We
give some experimental results in Sect. 4. Concluding remarks are included in
Sect. 5.
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1 Preliminaries

The specialization of PVD to linear least squares problem was presented in |2,
8] and a more general approach was presented in [6]. The same domain decom-
position approach to linear least squares problem has been employed in [1,9-11]
but under a different name.

Let A be an m x n real matrix, b € IR™, and M be an m X m positive definite
matrix. The weighted linear least squares problem is

Az —b 1
min |4z~ bllas (1)

where [[y[3, = y" My.

To apply the PVD approach, the space IR" is decomposed as a Cartesian
product of lower dimensional spaces R™, i = 1,...,g, where Z 1n1 = n.
Accordingly, any vector z € IR" is decomposed as x = [z; --- z,4]|T, and the
matrix A is partitioned as A = [A; -+ Ag], where 4; € R™ ™ and each A4; is
assumed to have full rank. Then, the least squares problem (1) is equivalent to

g

i=1

In a parallel processing environment, consistent with the application of the
PVD approach we assume that there are g processors each of which can update
one block component, z;. These processors that solve the subproblems are called
as slave processors and are coordinated by a master processor which computes
the global solution vector.

Let t € T = {1,2,...} be a normalized integer counter of actual times that
one or more components x; of x are updated, and let z:(¢) be the approximation
to x*, the solution of (1), at a given time instant t. Further, let 7¢ C 7 be the
set of times component ¢ is updated and x;(t) be the value of component x; at
time t. For a given ¢, each slave i for which ¢t € 7°, is assigned the subproblem

Solve for d;(t) € R™ : mln HA di +r(t—-1)], (3)
di€R

where d;(t) = x;(t)—x;(t—1) is the direction vector and r(t) = Y7 A;jx;(t)—b =
r(t—1)+ 37, Aid;(t) is the residual. The master computes the global solution

z(t) = z(t — 1) +ZJ1-(¢), (4)

where d; € IR" is the vector d; complemented with zeros in places of blocks
j€{l,...,g}, j #i. Note that d;(t) is nonzero only for the components i for
which t € T°.

If for all t € 7 we have t € T%, i = 1,...,g, then we get a synchronous
iteration in the form of Jacobi method on normal equations ATAz = ATb [10],
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where the values of all the components x;(t) are computed using the values
from the previous iteration, namely z;(t — 1), j = 1,...,g. However, in an
asynchronous setting, the processor computing d; may not have access to the
most recent values of other components of z, and d;(t) is computed using a
residual r = 379_, Ajxz;(7(t)) — b, where 7/(t) are time-stamps satisfying
0<7(t)y<t, VteT. (5)

In (5) the difference ¢ — 7/(t) can be seen as a communication delay. This
communication delay, or time-lag, causes that old data is used in the computation
of a component z;. Consequently, these updates computed using older values
deteriorate the convergence property of the algorithm. We call these older values
in the system as old history and their deteriorating effect as the effect of old
history.

When the coefficient matrix A is partitioned, the blocks A; are formed by
non-overlapping consecutive columns. Nevertheless, in the implementation of
(3) the effect of row dependence between the blocks comes into picture. The
dependence between these subproblems can be represented by a directed graph
called dependency graph, and for this particular problem the dependency graph
is an adjacency graph since we have a symmetric system [10]. For the PVD
formulation of the linear least squares problem as given above, the set of essential
neighbors for a given node 7 in the dependency graph is defined as E; = {j |
block 7 and block j have nonzero elements on the same row positions}.

2  From Jacobi to a Partially Asynchronous Algorithm

We first introduce planar search as an alternative to line search for finding a
relaxation parameter. Then we show a way of making all the blocks essential
neighbors of each other, which eliminates the need for waiting for an update
from one’s essential neighbors during the computations to avoid zero updates.

2.1 Planar Search

In (4), after each direction vector d; is computed, a line search can be done
to compute a relaxation parameter w; that will give the most decrease in the
residual vector r for this direction. The relaxation parameter w; given in [11] is
computed as the solution of the one dimensional least squares problem
min H(Azdl(t))wl + T(t — 1)HM s (6)
w; €R
and only the direction vectors that give w; values that are in the interval (0, 2)
are used to update the residual vector. However, instead of doing a line search
to correct each of these d; vectors one by one, we can wait for receiving all the
direction vectors d;, i = 1,..., g, and introduce a planar search where the values
of the relaxation parameters w;, ¢ = 1,..., g, are computed as the solution of a
new least squares problem.
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Let A = [Aczl e AJQ], where A € IR™*9. Then the planar search step is:
Solve for s(t) € R : min | A(t)s +r(t —1)||la - (7)

The new iterate is
g

o(t) =a(t—1)+ Y si(t)di(t) .
i=1
Planar search as defined in (7) is an extension of (6) where the restriction
on the values of w; is eliminated. Obviously, the planar search step implemented
in this fashion introduces a blocking synchronization point in the parallel imple-
mentation whereas line search is done without synchronization.

2.2 Expanded Blocks

We pointed out in [11] the need for waiting for an update from any one of the
essential neighbors of a given block ¢ between two consecutive updates from
this block in order to avoid redundant zero computations. If the subproblems
are formed such that each block is an essential neighbor of all the other blocks,
the computations can go on continuously with no delay. One method to obtain
blocks that are all essential neighbors of each other is to take the original blocks
i, i =1,..., g, as they are and expand these blocks by g — 1 new columns, one
for each block j, j # 4, j € {1,...,g}. Each of these new columns is the one
dimensional aggregate of subspace j, j #14, j € {1,...,g}.

Let p € R" be the weight vector partitioned as p = [p1 -+ py]', where
p; € R", i=1,...,9. Let p; € IR" be the vector obtained by starting with a
zero vector and placing the non-zero entries of p; in the positions corresponding
to the column indices in A of A;. Define the n x (g — 1 4 n;) matrix P;:

]T

Pi=pr -+ Pie1 Ii Diy1r -+ Dg| (8)

where I; € IR™*" is the identity matrix and I i_s the n x n; matrix formed from
columns of the n x n identity matrix so that Al;, = A;.
For n; = n; + g — 1, define the m x n; matrix

Ay = AP, = [Apy - Api1 Ai Apip1 - Apg] 9)

The expanded subspace is now the range space of A; and Apj = Ajpj is the one
dimensional aggregate of A;.

Unless the weight vector p is very sparse, all the newly formed expanded
blocks A;, i =1,...,g, will be essential neighbors of each other.

For a given p(t) € IR" at time ¢ the subproblem (3) is replaced by

Solve for d;(t) € R™ : min || A;(t)d; +r(t — 1)||ar (10)
d;eIR™i

where A;(t) is defined in (9) for the given vector p(t).
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The step ¢ € IR" is
c= Zg: Pid; . (11)
i=1
For a given ¢ € R", define the n x g matrix
C=lc1 -+ ¢q) . (12)
Consider the m x g matrix
A=AC =[A¢ --- Az, . (13)

Then the planar search step (7) is executed replacing the matrix A(t) with the
A of (13). We use the vector ¢(t) defined in (11), and the new iterate is

x(t) =x(t — 1)+ C(t)s(t),

where C(t) is defined in (12).

One question is how to choose the weight vector p. When the only aim is to
form new blocks that are all essential neighbors of each other any choice of a non-
zero p that is not very sparse is acceptable. Yet, while forming the aggregations of
each block we can also try to increase the convergence rate of the new algorithm.
If we could choose p(t) = x* — x(t) = e(t), then each P;(t)d;(t) would be e(t)
and we would get convergence in one step [2]. Since e(t) is not known, a good
approximate is taking p(t) = x(t) — z(t — 1) = C(¢)s(t). This choice leads to a
significant reduction in the number of iterations in sequential and synchronous
implementations of this approach [2]. Other choices for p are constant values,
eg.p=[1---1]T, or a predictor/corrector scheme defined by keeping p fixed
for several predictor iterations without having to redo any factorizations [2].
Note that when p is a zero vector, we get the block Jacobi iteration on normal
equations.

3 A Partially Asynchronous Algorithm

The two issues introduced in the former section, if applied directly on the block
Jacobi iteration on normal equations, will give a synchronous parallel algorithm
since planar search brings out the need for a blocking synchronization step. We
know that too frequent blocking synchronization points in parallel implementa-
tions should be avoided due to the performance penalties imposed on the system
[10]. Hence, we decide to do a planar search after every [ sweeps, i.e., after [ up-
dates received from each block 4, i = 1,...,g. Between two planar search steps
the weight vector p and consequently A; matrices are kept constant. The [ up-
dates received between two synchronization points from each slave are accumu-
lated and matrix A is formed using these accumulated values. The accumulation
of updates in this manner is an application of reliable updating technique which
leads to very accurate approximations provided that the accumulations do not
become too large [3].
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Between two synchronization points a running copy of the residual is kept,
which is updated on receiving a new result from any one of the slaves and its
updated value is sent back to the slave who has communicated the last result.
Hence, asynchronism is introduced in the system, which adds the flavor of Gauss—
Seidel in the iterations. The original residual vector is used in the planar search
step and is updated thereafter.

Observe that in (10), d; = [6] -+ 6!, d; 6,y --- 6;]7, where d; € IR™
is the variable representing the space spanned by the ith block of variables in
x;, and the scalar values (5}- are the aggregate variables expanding this space.
Expanding the subproblems with these aggregate variables not only makes all the
new blocks essential neighbors of each other, but also creates a sort of “overlap”,
though the overlapping part of the newly formed blocks is in aggregated form.
In asynchronous implementations overlap to some degree is found to accelerate
the overall iteration [7]. However, the benefit of overlap is shown to be in the
inclusion of extra variables in the minimization for the local variables only. The
updated value on the overlapped portion of the domain should not be utilized
[5]. In our case, the inclusion of the scalar values 5; in the update of the residual
vector will increase the effect of old history in the system. Therefore, we form
and solve the expanded subproblems, but throw away the calculated 5; values.

The ¢ vector in (11) is replaced by ¢ = Zle d;, where d; are extracted from CZ
of (10). Since we use accumulated updates in A, the d; used in forming ¢ are, in
fact, d; = Y, d!.

Algorithm 1 (PALSQ).

if master
Partition A into ¢g blocks and Send one to each slave.
Initialize z(0), #(0), v°, ¢(1), A(1), A(1).
Broadcast v, A(1).

else {slave i, i=1,...,g}
Receive A;.
Receive v, A(1).

Form and factorize A;(1).

t=1.
while not converged do
if slave i, i=1,...,9

for j=0,...,1—-1
Solve for JZ : min || A;(t)d; + v7|| ar.
Compute A;d;.
Send Aidi, dl
if j # 1 — 1 Receive v/ 1.
Receive v°, A(t+1).
t=t+1.
Form and factorize A;(t).
else {master}
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for j=0,...,1—-1
fori=1,...,9
Receive A;d;, d;.
piti/9 = pit(i=1/g ¢ A;d;.
Send v/ t%/9,
A\l(t) = A\l(t) + A;d;.
c(t) = c(t) + d;.
Solve for s(t) : min | A(t)s + r(t — 1)||as.
z(t) =x(t — 1)+ C(t)s(t).
r(t) = r(t — 1) + A(t)s(t).
Compute convergence criteria.
if not converged
) =r(t).
At +1) = A(t)s(t).
Broadcast v°, A(t+1).
t=t+1.
Initialize A(t), c(t).
else
break.

In Algorithm 1, initially the weight vector is p = [1 --- 1]7. The matrix A is
defined as A(t + 1) = [Aip1(t) --- Agpy(t)], and is utilized in forming the new
EZ- matrices after each planar search step. Notice that in the algorithm A(t + 1)
is set to A(t)s(t). We know from (13) that A(t) = AC(t). Then

A(t)s(t) = AC(t)s(t) = A(C(t)s(t)) = Ap(t) = A(t +1) .

Thus, there is no explicit update of the weight vector p(t), since its new value is
packed in the matrix A(t + 1). Obviously, if p(t) = p is constant throughout the
algorithm, the assignment and the broadcast of A is done only ~once at the start
of the implementation, so as the forming and factorization of A;, i =1,...,g¢.

4 Numerical Experiments

The experiments are done using the “time-lagged” analytical model of [9]. The
example test problem used in the graphs is problem ASH958 from the Harwell-
Boeing sparse matrix test collection. The number of blocks and slaves g is 15.
In the graphs the markers on the continuous lines give the value of the residual
vector after each planar search. The dotted lines around the continuous lines
illustrate the temporary residual vector v. The curve of continuous line with no
markers depicts the behavior of a totally asynchronous implementation with no
relaxation parameter and synchronization of any form, where g slaves operate on
the original blocks A4;, i =1, ..., g, receiving the latest available residual vector
on the master whenever they send a new update.
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We first check the effect of planar search on old history. In Fig. 1 totally
asynchronous implementation is depicted against a partially asynchronous im-
plementation where the blocks are the same as in the totally asynchronous one,
but a planar search is done before updating the residual after [ sweeps. The
residual decreases monotonically for all choices of [ although we observe a dif-
ference in the number of planar searches and total updates on the temporary
residual vector v. Going from a synchronous implementation (I = 1) with planar
search to a partially asynchronous implementation with a synchronization step
after [ = 3 sweeps, the number of synchronization points before convergence
decreases from 21 to 9 (-57.1%), while the number of total updates computed
increases from 315 to 405 (428.6%). Considering that the updates are computed
in parallel whereas during a synchronization step all the slaves remain idle, the
case of [ = 3 makes more efficient use of the available resources.

The results depicted in Fig. 1 compared to Fig. 5 of [9], where the effect of
synchronization on old history is studied, point out that a synchronization step
combined with planar search is more effective than a simple barrier synchroniza-
tion in decreasing the magnitude of time-lag in the system.

In the second experiment we introduce expanded blocks formed using a con-
stant weight vector p = [1 --- 1]7. Here, [ = 1 gives a Jacobi implementation
with overlap and planar search. Figure 2 demonstrates that for all values of [
the residual is monotonically decreasing. The number of planar searches before
convergence decreases from 17 for [ = 1 to 8 for I = 3 (-52.9%), whereas the
total number of updates on the temporary residual vector increases from 255 to
360 (+41.2%). When we compare the results of this experiment with the former
one, we see the positive effect of overlap on the convergence rate.

Lastly, we implement Algorithm 1 as it is given in the previous section,
i.e., partially asynchronous implementation with expanded blocks and p(t) =
C(t)s(t). Here, different than the former two experiments, we observe that the
cases of [ = 2 and [ = 3 have a better converge rate than the case of [ = 1.
Again, for all values of [ we get a monotonically decreasing residual vector which
is not contaminated by old history. Comparing the case of [ = 1 with Den-
nis and Steihaug’s Jacobi-Ferris-Mangasarian algorithm [2] with the “forget-me-
not” variables of Ferris and Mangasarian [4] contributing to the planar search,
we observe that inclusion of the 5; values is necessary in a synchronous imple-
mentation, but in an asynchronous setting it is crucial and beneficial to discard
them, since their contribution increases the effect of old history in the system if
they are not discarded.

In this last experiment, the number of planar searches necessary before con-
vergence decreases from 21 for | = 1 to 7 for [ = 3, whereas the total num-
ber of updates on the temporary residual vector v remains constant at 315 for
both [ = 1 and [ = 3. This means that the number of synchronization points
is decreased by 66.7% while the same number of updates are computed asyn-
chronously (I = 3) instead of following a synchronous pattern (I = 1).

All these experiments indicate that some degree of synchronization intro-
duced in an asynchronous system combined with a form of overlap and a relax-
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Fig. 1. Partially asynchronous imple- Fig. 2. Partially asynchronous imple-

mentation with planar search versus to- mentation with planar search and ex-

tally asynchronous implementation. panded blocks in which p=[1 --- 1]T
versus totally asynchronous implemen-
tation.

0 100 200 300 400 500 600 700
. of updates on the residual

Fig. 3. Partially asynchronous implementation with planar search and expanded blocks
in which p(t) = C(t)s(t) versus totally asynchronous implementation.

ation parameter eliminate the deteriorating effect of old history. This approach
of combining different issues that affect old history in the system is more effective
than the single attempts carried out in [9, 11].

5 Concluding Remarks

Algorithm PALSQ is, in fact, a predictor-corrector algorithm, since in the asyn-
chronous phase we accumulate updates (prediction) and only in the synchroniza-
tion step the residual is updated (correction) with a combination of these ac-
cumulated updates and a relaxation parameter. During the asynchronous phase
only the temporary residual vector v is updated. Therefore, the residual vector
is concealed from the effect of old history.

We eliminate the effect of old history in a given asynchronous system intro-
ducing blocking synchronization, a relaxation parameter computed in a planar
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search, and overlap between subproblems in form of aggregated columns expand-
ing the subproblem spaces, all applied together in Algorithm PALSQ. Slightly
increasing the size of the subproblems for the sake of increasing dependency
between slave processors and benefiting from the synchronization point for com-
puting a relaxation factor turns out to be more effective than introducing only
simple synchronization points or decreasing the number of processors in the
system as means of decreasing the effect of old history.

We have considered only two values for the weight vector p, which is used in
aggregating the blocks and forming overlap between the subproblems. Both the
experiment with p having a constant value and the experiment with a variable
p(t) vector indicate that overlap is an effective factor in decreasing the deteri-
oration caused by old history. Therefore, it is important to investigate further
what other values can be assigned to the weight vector.
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