
A Parallel PSPG Finite Element Method
for Direct Simulation of Incompressible Flow

Jörg Stiller1, Karel Fraňa1, Roger Grundmann1,
Uwe Fladrich2, and Wolfgang E. Nagel2

1 Institute for Aerospace Engineering, TU Dresden, D-01062 Dresden, Germany
{stiller,frana,grundmann}@tfd.mw.tu-dresden.de

2 Center for High Performance Computing, TU Dresden, D-01062 Dresden, Germany
{fladrich,nagel}@zhr.tu-dresden.de

Abstract. We describe a consistent splitting approach to the pressure-
stabilized Petrov-Galerkin finite element method for incompressible flow.
The splitting leads to (almost) explicit predictor and corrector steps
linked by an implicit pressure equation which can be solved very ef-
ficiently. The overall second-order convergence is proved in numerical
experiments. Furthermore, the parallel implementation of the method is
discussed and its scalability for up to 120 processors of a SGI Origin 3800
system is demonstrated. A significant superlinear speedup is observed
and can be attributed to cache effects. First applications to large-scale
fluid dynamic problems are reported.

1 Introduction

We are interested in direct numerical simulations (DNS) of transitional and tur-
bulent flows. Traditionally, specialized finite difference or spectral methods are
used for this purpose. Though very efficient, these methods are often restricted
to simple configurations. Unstructured finite volume methods and finite element
methods are more flexible and offer the potential benefit of easier incorporating
adaptive techniques. On the other hand, they are computationally less efficient
and more difficult to parallelize. Also, the discretization scheme has to be care-
fully designed to meet the accuracy requirements for DNS.

In this paper, we consider a pressure-stabilized Petrov/Galerkin finite ele-
ment method (PSPG-FEM) based on linear shape functions [1]. In Section 2, we
describe a splitting approach that is similar to common projection and fractional
step methods (see, e.g. [2]) but novel in the context of PSPG-FEM. The splitting
yields an implicit Poisson-type equation for the pressure and an almost explicit
predictor-corrector scheme for the velocity. In Section 3, we discuss the imple-
mentation on top of our in-house MG grid library [3]. Numerical accuracy and
scalability of the method are examined in Section 4. In Section 5, we briefly dis-
cuss the application to DNS of electromagnetic stirring with rotating magnetic
fields.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 726–733, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Parallel PSPG Finite Element Method 727

2 Finite Element Method

The flows under consideration are governed by the incompressible Navier-Stokes
equations

∂tu + ∇ · uu = −∇p + ν∇2u + f

∇ · u = 0

where u is the velocity, p is the pressure divided by density, ν is the kinematic
viscosity and f is the body force per unit mass. After triangulating the compu-
tational domain Ω into elements {Ωe}, the pressure-stabilized Petrov/Galerkin
formulation of the problem can be stated as

∫
Ω

[
w · (∂tu + ∇ · uu + ∇p − f) + (∇w)T : ν∇u

]
dΩ =

∫
Γ

w · ν∂nu dΓ

∫
Ω

q∇ · udΩ +
∑

e

∫
Ωe

τ∇q · r(u, p) dΩ = 0

where w and q are the momentum and continuity weight functions, Γ is the
boundary with normal n, τ is the elementwise defined stabilization coefficient,
and

r(u, p) = ∂tu + ∇ · uu + ∇p − ν∇2u − f = r∗(u) + ∇p

is the momentum residual. Dropping the stabilization term (τ = 0) recovers the
standard Galerkin formulation which, however, is unstable for equal-order in-
terpolations. Appropriate choices for τ are given in [4]. In the following we use
τ = constant, for simplicity.

The PSPG formulation can be formally integrated in time to give
∫

Ω

[
w ·

(un+1 − un

∆t
+∇ ·uu +∇p̄− f̄

)
+ (∇w)T : ν∇ū

]
dΩ =

∫
Γ

w · ν∂nūdΓ

∫
Ω

q∇ · un+1 dΩ +
∑

e

∫
Ωe

τ∇q · r̄(u, p) dΩ = 0

Here, the overbar denotes the average over the time interval (tn, tn+1). Intro-
ducing the elementwise polynomial approximation yields the discrete equations
which, symbolically, can be stated as

M
Un+1 − Un

∆t
+ N̄ + DP̄ + νLŪ − F̄ = −νLΓ Ū

D · Un+1 + τ(DT · R̄∗ + LP̄) = 0

where U , P , F and R represent the expansion coefficients, M is the mass ma-
trix, N̄ the contribution of the nonlinear term, D is the gradient matrix, L is
the Laplace matrix and LΓ the related boundary contribution. The momentum
equation can be split into a velocity (predictor) and a pressure (corrector) step:

U∗ = Un − ∆tM−1(N̄ + ν(L + LΓ)Ū − F̄)

728 J. Stiller et al.

Un+1 = U∗ − ∆tM−1DP̄

Employing R̄∗ = (U∗ − Un)/∆t, the following pressure equation can be ob-
tained:

[(1 − δ)D · M−1D + δL]P̄ = −D · U∗/∆t

where δ = τ/∆t. It is worth noting that the last three equations are still consis-
tent with the exact solution of the continuous problem, if N̄ is properly defined.
We further remark that δ = 1 is related to projection methods using the continu-
ous pressure equation, and δ = 0 corresponds to the standard Galerkin method.

In our piecewise linear approximation, the nonlinear term is evaluated as

N̄ = D · ŪŪ

where ŪŪ represents the nodal values of the momentum flux tensor ūū. The
time averages are evaluated using the second-order Adams-Bashforth method.
Furthermore, the pressure gradient is modified using the Gresho-Chan trick [5].
The resulting, final splitting scheme is

U∗ = Un − ∆tM−1(D · ŪŪ + ν(L + LΓ)Ū − F̄)

[(1 − δ)D · M−1
L D + δL]P̄ = −D · U∗/∆t

Un+1 = U∗ − ∆tM−1
L DP̄

where ML denotes the lumped mass matrix.

3 Parallel Implementation

The numerical model was implemented on top of the MG grid library. MG
provides data structures and procedures for handling unstructured grids as well
as stable and fast methods for grid adaptation [3, 6]. Both, the MG library and
the flow solver are coded in Fortran 95 and use MPI for communication.

Parallelization with MG is based on grid partitioning. In the simple case
considered here, the grid generated by an external grid generator is decomposed
into a specified number of partitions using the MeTiS package [7]. For adaptive
simulations, a recursive multilevel-partitioning strategy is available [3].

In each time step, the numerical model requires the solution of two linear
algebraic systems. In the predictor step, the consistent finite element mass matrix
must be resolved. Since this matrix is well conditioned, a few (1–3) damped
Jacobi iterations are sufficient. The pressure equation is solved using the CG
method. As a good initial approximation is available from the preceding time
step, usually 10–100 CG iterations provide the new pressure with the required
accuracy. Alternatively, a multigrid method using a damped Jacobi smoother
and a CG coarse grid solver is under consideration. It may be expected that the
multigrid solver is more effective in large-scale simulations, but this has no been
verified yet.

Basically, the execution of one time step essentially involves two types of
global operations which have to be performed in parallel:

A Parallel PSPG Finite Element Method 729

– the computation of matrix-vector products
– the scalar product of coefficient vectors

The implementation of the latter is trivial, as only the contribution of multiple
copies (in shared grid nodes) has to be canceled. The matrix-vector products
can be expressed as, e.g.,

LijP̄j =
∑

p

Lp
ijP̄j

where Lp
ij is the contribution from the elements of partition p. These local ma-

trices are precomputed and stored in an edge-based data basis. Once the local
products are evaluated, the final result is obtained by adding the individual
contributions in all nodes shared between one or more partitions. In the ac-
tual implementation, this operation is realized just by calling the appropriate
procedure of the MG library.

4 Accuracy and Performance

Two laminar flow configurations with known analytic solution were used to ex-
amine the accuracy of the method: The transient channel flow between two
parallel plates, and the stationary flow of an electro-conducting fluid in an infi-
nite cylinder that is exposed to a rotating magnetic field (see [8]). Unstructured
tetrahedral grids with different mesh spacing h were used in both cases. The
results shown in Fig. 1 clearly reveal a convergence rate of order 2.

h
0.02 0.03 0.04 0.05 0.06 0.07

0.01

0.02

0.03

0.04

0.05

t=1s
t=2s
t=3s

h∼ 2

εu

h
10-4 10-3 10-210-4

10-3

10-2

10-1

computed

h2≈

eu*

Fig. 1. L∞ velocity error in transient channel flow (left) and in RMF-driven flow
(right).

Performance tests have been conducted on a SGI Origin3800 system at TU
Dresden. Three cases with grids ranging from 110,000 up to 7.1 million elements
were considered. In the tests, one time step with a fixed number of iterations

730 J. Stiller et al.

was performed using one to 120 processors. The measured speedup and the
computational rate are depicted in Fig. 2. Especially for the medium grid a
significant superlinear speedup is observed. Since the parallel efficiency is unlikely
to increase, this behavior can only be attributed to gains in local efficiency. A
possible explanation is that our code heavily depends on indirect addressing,
which on its part results in a suboptimal cache efficiency. With decreasing size the
problem fits better into the cache hierarchy, leading to a gradual improvement
of local computational efficiency. We remark that similar effects were observed
by other authors [9].

For the other two cases the same arguments apply. The larger problem does
not fit in cache in 64 or less processors but shows a superlinear performance gain
for higher numbers. Finally, the smallest problem achieves optimal cache perfor-
mance earlier, and thus shows an increasing loss of parallel efficiency. Therefore,
the overhead introduced for such a small problem is obvious. However, when
taking into account that the local grids contain only about one thousand ele-
ments (or 200 nodes) on 120 processors, the measured efficiency of 75% is still
remarkable.

While the parallel speedup is dependent on the total problem size, the com-
putational rate (average local size divided by wall clock time) shows a consistent
behavior: Unless the local problem does not fit in cache a sustained rate of 2,500
elements per second is obtained in all three cases. The highest rate and, hence,
optimal cache performance is achieved with 10 thousand (or less) local elements.
From this point, decreasing parallel efficiency starts to reduce the computational
rate.

processors

sp
ee

du
p

0 20 40 60 80 100 120

20

40

60

80

100

120

140

NE = 1.1·105

NE = 8.8·105

NE = 7.1·106

linear

elements per processor

#
el

em
en

ts
pe

r
se

co
nd

103 104 105 106

2000

2500

3000

3500

4000

NE = 1.1·105

NE = 8.8·105

NE = 7.1·106

Fig. 2. Speedup (left) and computational rate (right).

A Parallel PSPG Finite Element Method 731

5 Application

The solver is currently being used to perform direct numerical simulations of
the flow in a cylindrical cavity that is exposed to a rotating magnetic field
(RMF). This problem is related to electromagnetic stirring of melts in metallurgy
and crystal growth in semiconductor production. Despite of its significance, the
transitional and early turbulent regimes of flow are largely unexplored.

Figure 3 depicts the configuration. B is the flux density vector of the magnetic
field which rotates with angular speed ω. Comparable to an induction motor,
the field induces a primary rotating motion of the enclosed electro-conducting
fluid. Additionally, a secondary recirculating flow develops due to the local action
of friction forces. Under the so-called low-frequency/low-induction assumption,
which is valid for most practical applications, the flow is described by the in-
compressible Navier-Stokes equations with an a priori known Lorentz force (see
[10] for more details).

In our simulations computational grids ranging from 105 up to 20 million
elements (3.5 million nodes) have been applied. Figure 3 shows a typical coarse
grid divided into 32 partitions. An important result of the DNS study is the
insight in the formation, evolution and finally dissipation of Taylor-Görtler-like
vortices that obviously dominate the turbulence physics and provide an efficient
mixing mechanism in this type of flow (Fig. 4). A detailed description of this
and further results will be subject to a forthcoming paper.

B
ω

Fig. 3. Stirring with a rotating magnetic field: Sketch of configuration (left) and coarse
grid divided into 32 partitions (right).

732 J. Stiller et al.

Fig. 4. Instantaneous vortex structures in weakly turbulent regime.

6 Conclusion

We have described a splitting approach to the pressure-stabilized Petrov-Galerkin
finite element method for incompressible flow. Similar to conventional fractional
step or projection methods it allows for segregating the pressure computation
but retains a consistent formulation. The existing MG grid library provided a
suitable basis for the parallel implementation of the method. The excellent scal-
ability of the flow solver was demonstrated in a performance study on a SGI
Origin 3800 using up to 120 processors. These tests also revealed a considerable
superlinear speedup which can be explained by increasing cache efficiency at
smaller local problem sizes. The solver was successfully applied in large produc-
tion runs for direct numerical simulations of transitional and turbulent flows
driven by rotating magnetic fields.

Acknowledgments

Financial support from German “Deutsche Forschungsgemeinschaft” in frame
of the Collobarative Research Center SFB 609 is gratefully acknowledged. The
measurements were done on a SGI Origin 3800 based on a grant from ZHR at
TU Dresden.

A Parallel PSPG Finite Element Method 733

References

1. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for
computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A
stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-
order interpolations. Comput. Meth. Appl. Mech. Eng. 59 (1986) 85–99.

2. Codina, R.: Pressure Stability in Fractional Step Finite Element Methods for In-
compressible Flows. J. Comp. Phys. 170 (2001), 112–140.

3. Stiller, J., Nagel, W.E.: MG – A Toolbox for Parallel Grid Adaption and Im-
plementing Unstructured Multigrid Solvers. In: E.H. D’Hollander et al. (Eds.):
Parallel Computing. Fundamentals & Applications. Imperial College Press 2000,
391–399.

4. Tezduyar, T., Osawa, Y.: Finite element stabilization parameters computed from
element matrices and vectors. Comput. Meth. Appl. Mech. Eng. 190 (2001), 411–
430.

5. Gresho, P.M.: On the theory of semi-implicit projection methods for viscous in-
compressible flow and its implementation via a nite element method that also
introduces a nearly consistent mass matrix I: Theory. Int. J. Num. Meth. Fluids.
11 (1990), 587–620.

6. Stiller, J., Wienken, W., Fladrich, U., Grundmann, R., Nagel, W.E.: Parallel and
Adaptive Finite Element Techniques for Flow Simulation. In C. Breitsamter et al.
(Eds.): New Results in Numerical and Experimental Fluid Mechanics IV (Notes
on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 87). Springer
Verlag 2004, 366–373.

7. Karypis, G., Kumar, V.: Multilevel Algorithms for Multi-Constraint Graph Parti-
tioning. Univ. Minnesota, Dep. Computer Science, TR 98-019, 1998.

8. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University
Press 2001.

9. Baggag, A., Atkins, H., Keyes, D.E.: Parallel implementation of the Discontinous
Galerkin Method. In: Proceedings of Parallel CFD’99, 1999, 233–240.

10. Gelfgat, Yu.M., Priede, J.: MHD flows on a rotating magnetic field (A review).
Magnetohydrodynamics 31 (1995) 1–2, 188–200.

	1 Introduction
	2 Finite Element Method
	3 Parallel Implementation
	4 Accuracy and Performance
	5 Application
	6 Conclusion
	Acknowledgments
	References

