
A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 104–113, 2004.
 Springer-Verlag Berlin Heidelberg 2004

A Novel Constraint-Based Approach
to Online Graphics Recognition

Luo Yan, Guanglin Huang, Liu Yin, and Liu Wenyin

Department of Computer Science, City University of Hong Kong
83, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China

{luoyan,hwanggl}@cs.cityu.edu.hk, {liuyin,csliuwy}@cityu.edu.hk

Abstract. Online graphics recognition has become the key problem for pen-
based user interface on small screen devices, such as PDA and Tablet PC. In
this paper, a novel constraint-based approach to online graphics recognition is
proposed. The key idea of our approach is that when the user is drawing a
graphic object, the system can extract the constraints between primitives and
basic shapes from the object and use these constraints to retrieve similar graphic
objects from the database at run time. The user can then choose the standard ob-
ject from the ranked list of results to replace his sketches before he finishes
drawing all strokes of the object. For this purpose, we summarize three types of
primitives and several types of basic shapes as the basic components of a
graphic object. We also define a set of constraints between primitives and basic
shapes to represent their structural relations. The algorithms for online con-
straint extraction and graphics recognition are also presented. Experimental re-
sults show that our approach is efficient for online graphics recognition and ef-
fective for improving the user’s productivity.

1 Introduction

Recently pen-based devices such as PDA and Tablet PC have become more and more
common to the general public. In these devices, graphics is an important and useful
means for users to store information, express thought, and sketch designs. Many sys-
tems were developed to facilitate users to draw graphics, such as Microsoft Visio,
SmartDraw, and AutoCAD. In these systems, the user is asked to draw graphics by
selecting the particular type of graphic object from lots of toolbar buttons or menu
items. This task is very time-consuming and inconvenient, especially when the num-
ber of predefined graphic objects in the system is very large. The most convenient and
natural way for human beings to draw graphics should be using a pen to draw
sketches, just like drawing on a real sheet of paper. However, the sketches drawn in
this way are not standard and clear in appearance, not compact in representation and
storage, and not easy for machines to understand and process. It is necessary to rec-
ognize and convert the sketches to the regular and standard graphic objects that the
user intends to draw. Moreover, it is even better if we can do recognition while the
user is sketching since the recognized parts can provide immediate and useful feed-
back to the user so that he can realize errors or inappropriateness earlier and therefore
draw the graphics more perfectly. In many cases, recognizing graphic objects early
can also significantly save the user’s input strokes and time. Hence, online graphics

A Novel Constraint-Based Approach to Online Graphics Recognition 105

recognition has become the key problem for pen-based user interface on these small
screen devices. Moreover, online graphics recognition can be also viewed as a query
and retrieval problem. The user’s input strokes can be viewed as a query and the sys-
tem retrieves the similar graphic objects from a number of predefined standard
graphic objects. Although the aims of retrieval and recognition are different, the un-
derlying technology is common in that a matching procedure is needed to compare the
input pattern with each known pattern. Therefore, the techniques for retrieving online
graphics are also within the scope of online graphics recognition. In the following, we
will not distinguish retrieval from recognition. The readers should bear in mind the
common points and differences between them.

Compared with offline graphics recognition, online graphics recognition has some
special characteristics. First, the input graphic object for online graphics recognition is
usually incomplete, since our goal is to recognize the user’s sketches before he fin-
ishes the whole graphic object, which can provide an immediate and useful feedback
to the user. This characteristic implies online graphics recognition has to recognize
the user intended object based on partial information in many cases. Second, the
strokes in the same graphic object can be drawn in different orders by different users.
Hence, the incomplete user’s input of the same graphic object can be very different
for online graphics recognition. That means it is not easy to apply the traditional
matching methods for offline graphics recognition to online graphics recognition,
since there can be many different kinds of incomplete graphic objects for the same
complete one and it is difficult to match all of them to the complete one. Third, online
graphics recognition needs more efficiency than offline graphics recognition. The
system has to provide the immediate feedback to the user at run time; otherwise, it
will be tedious and time-consuming instead of saving the user’s input strokes and
time. Hence, the efficiency of online graphics recognition is very important for a good
user interface.

Many research works have been done on such online graphics recognition. Ze-
leznik et al. [1] have invented an interface to input 3D sketchy shapes by recognizing
the predefined patterns of some 2D graphic objects. Jorge’s group [2][3] have imple-
mented an online graphics recognition tool that can recognize several classes of sim-
ple shapes based on global area calculation, which can hardly distinguish ambiguous
shapes such as pentagon and hexagon and therefore cannot achieve high recognition
precision generally. SILK [4] is an informal sketching tool that combines many of the
benefits of paper-based sketching with the merits of current electronic tools. JavaS-
ketchIt [5] is another system for this purpose, which can generate a Java interface
from hand-drawn geometric shapes. SKETCHIT [6] is a system that can transform a
single sketch of a mechanical device into multiple families of new designs. LADDER
[7] is a language to describe how sketched diagrams in a domain are drawn, dis-
played, and edited, and used for online graphics recognition. The recognition ap-
proach is still not adequate for a real software tool that can be used for inputting most
classes of diagrams. Hence, in order to provide the capability to input more complex
diagrams, it is necessary to extend the online graphics recognition approach to handle
more complex and composite shapes, as done in SmartSketchpad [8], which can effi-
ciently and effectively input composite graphic objects by sketching only a few con-
stituent strokes.

106 Luo Yan et al.

2 Our Approach and Contribution

In this paper, we propose a novel constraint-based approach to online graphics recog-
nition. The key idea of our approach is that when the user is drawing a graphic object,
the system can extract the constraints between primitives and basic shapes from the
object and use these constraints to retrieve or recognize similar standard graphic ob-
jects from the database at run time. The user can then choose the standard object from
the ranked list of results to replace his sketches before he finishes drawing all strokes
of the object.

Our contribution includes, 1) we summarized three types of primitives and several
types of basic shapes; 2) we defined a set of constraints between primitives and basic
shapes to represent their structural relations; 3) we developed an algorithm for online
constraint extraction from the user’s input graphic object, which is incomplete in
many cases; 4) we developed another algorithm for online graphics recognition based
on the constraints of the user’s input graphic object; 5) we proposed an algorithm for
calculating the similarity between the user’s input graphic object and the candidate
graphic objects for displaying the recognized results in a ranked list.

Fig. 1. The flowchart of our approach

Figure 1 is the flowchart of our approach. The user begins his sketches by drawing
some basic strokes (or primitives). The system starts to extract the constraints be-
tween these primitives and uses the extracted constraints to recognize the similar
standard graphic objects in the database. By using our proposed similarity calculation
algorithm the system can then calculate the similarity between the user’s input
graphic objects and the candidate graphic objects, and display the recognized results
in a ranked list. If the user’s intended graphic object is displayed in the list, he can just
choose this standard object to replace that incomplete sketches he has just drawn. The
system applies these procedures, such as constraint extraction, graphics recognition,
and similarity calculation, at the same time as the user is drawing the sketches. Hence

A Novel Constraint-Based Approach to Online Graphics Recognition 107

it can facilitate the user to draw graphics by significantly saving the user’s input
strokes and time.

In the following of this paper, we first propose our constraint-based approach to
describe the user’s input graphic object in Section 3. Then, algorithms for constraint
extraction and graphics recognition are discussed in Section 4 and 5, respectively.
Finally, experimental results and concluding remarks are presented.

3 Constraint-Based Representation of Graphic Objects

As we discussed above, our approach focuses on the relative spatial relations between
primitives and basic shapes. Hence, we use constraints to represent the user’s input
graphic object in our approach. Constraint, or geometric constraint, is not a new con-
cept, which has been widely used in CAD systems (e.g., [9]). However, in many CAD
systems (e.g., [9][10][11]), the constraints are defined, extracted, and specified by
professional and experienced users. In our approach, we defined a set of constraints to
describe the spatial relations between primitives and basic shapes. The system can
extract constraints while the user is drawing the sketches and uses these constraints to
recognize similar standard graphic objects in the database at run time. Thus, our defi-
nition of constraints should be broad enough to support a wide range of graphic ob-
jects, while remaining narrow enough to be comprehensible.

First of all, we define three types of primitives: Line, Circle, and Arc. As shown in
Figure 2, P1 and P2 are two endpoints of a Line. We can assume P1 is the start-point
and P2 is the end-point such that we can define the direction of a Line is from P1 to P2.
For a Circle primitive, it also has two attributes, C (center-point) and R (radius). In
the definition of an Arc, we use P1 and P2 to represent the start-point and end-point of
an Arc since the user usually pays more attention to the start-point and end-point than
the center-point. That means the user does not care about the curving of an Arc but
the position of an Arc. However, the direc-
tion of the bow of an Arc is very important
for the user to distinguish different graphic
objects. Hence, if we define a positive direc-
tion from P1 to P2, like X-axis, then we can
define the Direction of the bow of an Arc.

Then we define the constraints between
the above primitives. We analyzed more
than 300 types of graphic objects to summarize the constraints. Since we only use
three parameters (i.e., P1, P2, and Direction) to define an Arc primitive, we can image
an Arc as a Line plus a Direction. Hence, we can just analyze the constraints between
Line primitives and apply these constraints to Arc primitives by simply adding a Di-
rection parameter. Therefore, we first define four constraints between Line primitives
and Arc Primitives, including Connection, Intersection, Parallelism, and Perpendicu-
larity. For a Circle primitive, we regard it as a basic shape, which is discussed in the
following section, and define the constraints between basic shapes and primitives to
describe their spatial relations. Here, for easily understanding, we only use Line
primitives to describe the four constraints between Line and Arc primitives. For the
cases including Arc primitives, only one additional parameter, Direction, is required.

Line Circle Arc

Fig. 2. Primitives

108 Luo Yan et al.

(1) Connection
Connection is a constraint to describe that two primitives share the same end-point,
just like they are connected at one end. Figure 3 illustrates this constraint.

Fig. 3. Connection

From the above figure, we can see that there are only four cases between two
primitives that are connected with each other, since one Line or one Arc has two end-
points. We use a parameter type to represent this information and use another parame-
ter angle to store the angle between the two primitives.

|)||/(|)cos(2121 LLLLangle •== α
In this definition, the parameter angle itself is not sufficient to fully specify the

spatial relationship of two intersected lines since the angle has a direction. Thus, we
use another parameter direction to describe this information. Consider L1(x1,y1,0) and
L2(x2,y2,0), which are 2D vectors in 3D space, and their cross product

),0,0(,
0

0
 ,

0

0

22

11

2

1

2

1
21 zL

yx

yx

x

x

y

y
LLL =





=×= 1221

22

11 yxyx
yx

yx
Lz −==

L is perpendicular to the plane formed by L1 and L2, and its direction complies with
the Right Hand Rule. Thus we can determine the direction by the sign of Lz. In addi-
tion, we use the parameter length to describe the relative length of L2 to L1 (length =
|L2|/|L1|).

(2) Intersection
Intersection is a constraint to describe that two primitives
are intersected with each other, which means they share the
common point on the primitives.

In Figure 4, two Line primitives are intersected with
each other at iPoint. We define four parameters to describe
this constraint. The first two parameters describe the rela-
tive position of iPoint on two Line primitives as follows.

1211

12
1

iPoint
iP

PP

P

−
−=

2221

22
2

iPoint
iP

PP

P

−
−=

We use other two parameters, angle and length, to describe the angle between two
primitives and relative length of them just like Connection constraint.

(3) Parallelism
Similar to Intersection, we also use four parameters to
describe Parallelism geometric constraint. The first
one is distance = D(L1,L2)/|L1|, in which D(L1,L2) de-
notes the real distance between line L1 and L2. The
second one, direction, is used to describe whether L2 is
on the left or right to L1 and the computing method is

Fig. 5. Parallelism

Fig. 4. Intersection

A Novel Constraint-Based Approach to Online Graphics Recognition 109

similar to the definition in Connection constraint. Moreover, we use two other pa-
rameters to specify their relative position and length. In Figure 5, L1 and L2 are parallel
to each other; sp and ep are the projections of the endpoints of L2 on L1. We set:

2111

21

..

.sp
point-start

PLPL

PL

−
−=

2111

21

..

.ep
point-end

PLPL

PL

−
−=

(4) Perpendicularity
For the Perpendicularity relationship in which two primi-
tives are connected or intersected, we can use Connection
or Intersection to represent it, respectively. Here, we only
define the Perpendicularity between two primitives when
they are not connected or intersected:

• Length ||/|| 12 LL=

• Per-point is the perpendicular point of 2L on 1L

• Start-point ||/|.,point-per| 212 LPL=

• End-point ||/|.,point-per| 222 LPL=

When we calculate start-point and end-point, we set a sign to the value of them.
We set it positive if the point is on the left-hand side of L1 and negative on the right-
hand side. The computing method is similar to computing direction in Connection
constraint. In Figure 6, the values of start-point and end-point are both positive.

Some primitives can constitute a very common
and basic shape, which is often used by users in
many complex graphic objects. Especially, the user
usually divides the whole sketch into some basic
shapes when drawing a complex sketch. Therefore,
we also summarized some basic shapes to represent
the user’s input graphic object at a higher level, as
illustrated in Figure 7.

For these basic shapes, we also define a set of
constraints to describe the structural relations be-
tween them. For instance, to the closed shapes, such
as Rectangle and Circle, we defined the Inner/Outer constraint to describe whether
other primitives or basic shapes are inside or outside them, because, in many cases,
the user pays more attention to the Inner/Outer relations between shapes than the
precise position or orientation of these shapes. For other non-closed shapes, we also
defined other constraints (e.g., relative position and orientation) to describe the struc-
tural relations between these basic shapes and other primitives.

4 Online Constraint Extraction

In this section, we discuss our developed algorithm for online constraint extraction,
which means that our approach extracts the constraints between the primitives and
basic shapes while the user is drawing sketches. This algorithm is developed based on

Fig. 6. Perpendicularity

Fig. 7. Some basic shapes

110 Luo Yan et al.

our previous work for offline graphics recognition [12]. We divide the procedure of
recognizing user’s drawing sketches into three stages.

1. The user begins his sketches with simple primitives, which do not constitute any
basic shapes. However, the simple primitives do contain useful information about
the user’s intention, e.g., they can be a part of a standard graphic object. Hence, our
algorithm extracts the constraints between the primitives as the representation of
user’s input at this stage and uses these constraints to retrieve the standard graphic
objects that contain the similar part.

2. When the user continues to draw sketches, there are enough primitives to constitute
a basic shape. At this stage, our approach uses the constraints between the primi-
tives to recognize them as a basic shape and provides a useful and immediate feed-
back to the user. The user can accept the feedback or adjust his sketches at this
stage. Once the user accepts his current sketches as a basic shape, his sketches are
replaced by the standard basic shape and he can go on with his sketches. The sys-
tem will then extract the constraints between the newly drawn primitives until a
new basic shape is recognized.

3. As the user goes on with his sketches, the constraints between the basic shapes
should also be extracted since they contain much useful information for recogni-
tion. Hence, at the third stage, the system extracts the constraints between basic
shapes and constructs a hierarchical constraint-based structure for recognition.

For the detail of the online constraint extraction algorithm, see the Case-based
Knowledge Acquisition Algorithm (CKAA) [12].

5 Online Graphics Recognition

The constraints extracted by the above algorithm are stored in a syntactical tree. We
use this tree to retrieve or recognize the similar standard graphic objects. We search
all the predefined graphic objects in the database for those that contain the similar
constraints, i.e., contain the similar graphic object to user’s input. However, we can-
not use the matching method for recognition since the user’s input is usually incom-
plete. Therefore, we propose a new scheme, which is like a reasoning method, for
recognizing graphic objects based on the constraints. When we test one standard
graphic object for whether it contains the similar graphic object to the user’s input or
not, we first hypothesize that one stroke of the standard graphic object is in the user’s
input. Using the constraints extracted from the user’s input, we can calculate the
specification of another primitive or basic shape based on the hypothesis stroke. Then
we search the standard graphic object to see whether it contains this stroke. If the
stroke is found, we continue tracing other constraints until all strokes are found in the
standard graphic object, which means, this standard graphic object contains the simi-
lar graphic object to the user’s input. Otherwise, we select another stroke to repeat
this hypothesizing/testing procedure. The algorithm presented below deals with ideal
situations. In practice, the tolerance should be considered and the matching measure
should be defined, which are discussed in our previous work [12]. The detail of the
online graphics recognition algorithm is shown in Algorithm 1.

A Novel Constraint-Based Approach to Online Graphics Recognition 111

When the result is output, the similarity between the user’s input graphic object
and the standard graphic object is calculated from two aspects. The first is the similar-
ity between primitives, which is calculated according to the difference of length, an-
gle and position between the two primitives. The second is the similarity of con-
straints, which is calculated by the percentage of exact matched primitives in the
standard graphic object. According to the similarity of the standard graphic objects,
we select top 10 objects in the database and return them in a ranked list to the user.

Algorithm 1: Online Graphics Recognition
Input: SC: the set of constraints from the user’s input graphic object

 DB: the database consists of standard graphic objects
 TL: the tolerances, e.g., length and number tolerance

Variables: CT: the temporary constructed tree for reasoning procedure
 SM: the set of marks to indicate primitives that have been tested

Output: RR: the recognition result, which type the graphic object is
1. Select a standard graphic object SG from DB. If all standard graphic objects have

been searched, then stop (failure)
2. Set CT empty and initialize SM
3. Select the next primitive P from SG, which has not been marked in SM. Add it into

CT as the root, and mark it in SM to indicate this primitive has been tested. If all
primitives have been marked in SM, goto step 1.

4. Select the next constraint C from SC. If all constraints have been traced then stop
(success) and output the current SG as RR

5. Calculate the new primitive or basic shape P’ using P and C
6. Search for a P’’ in SG, which is similar to P’ using the tolerances in TL.
7. If P’’ is found then set it as a child of P in CT and mark in SM to indicate P’’ has

been used and goto Step 4
8. If P’’ is not found and the number of missing primitives exceeds the tolerance then

goto Step 2. Otherwise, goto Step 4

6 Experimental Results

We have implemented a prototype system and done several experiments based on a
database consisting of 345 standard graphic objects, some of which are illustrated in
Figure 8. The user is asked to draw graphic objects and the system provides
immediate recognition results, from which the user can select his intended standard
graphic object. The average recogni-
tion accuracy is 90.5% since the user’s
input can be very different. We also
record the number of strokes that have
been saved for drawing an object. In
our experiments, the number of one
standard object’s strokes ranges from
1 to 14 and the average is 10.32. The
average number of saved strokes is
2.78, nearly 27%. We also evaluate
the response time of our approach.
The average response time to user’s

Fig. 8. Some standard graphic objects

112 Luo Yan et al.

input is within 100ms, which is efficient enough to give real-time response for a data-
base consisting of several hundreds of graphic objects. From the experimental results,
we can see that our approach is effective for online graphics recognition and saving
the user’s input strokes and time.

7 Conclusion and Future Work

In this paper, we proposed a novel constraint-based approach to online graphics rec-
ognition, with which the system can extract the constraints between primitives and
basic shapes from the user’s input and use these constraints to recognize similar stan-
dard graphic objects. Several constraints are defined and two algorithms are devel-
oped. Experimental results show that our approach is efficient for online graphics
recognition and effective for saving the user’s input strokes and time. However, some
aspects of our approach can be improved. More types of primitives, basic shapes, and
constraints can be added into our approach in the future to support more complex and
various graphic objects. Two algorithms for online constraint extraction and graphics
recognition can be also revised to improve the recognition accuracy and save the
user’s input stroke and time. We also plan to provide more graphic objects from vari-
ous domains to do experiments to test our system.

Acknowledgement

The work described in this paper was fully supported by a grant from the Research
Grants Council of the Hong Kong SAR, China [Project No. CityU 1073/02E].

References

1. R.C. Zeleznik, K.P. Herndon, and J.F. Hughes, “KETCH: An Interface for Sketching 3D
Scenes”, Proc. of SIGGRAPH, New Orleans, pp.163-170, 1996.

2. M.J. Fonseca and J.A. Jorge, “Using Fuzzy Logic to Recognize Geometric Shapes Interac-
tively”, Proc. of the 9th IEEE Conf. on Fuzzy Systems, Vol.1, pp.291-296, 2000.

3. M.J. Fonseca, C. Pimentel, J.A. Jorge, “An Online Scribble Recognizer for Calligraphic In-
terfaces”, Proc. of AAAI Spring Symposium Series – Sketch Understanding, 2002.

4. J.M. Landay and B.A. Myers, “Sketching Interfaces: Toward More Human Interface De-
sign”, IEEE Computer, Vol. 34, No. 3, pp. 56-64, 2001.

5. A. Caetano, N. Goulart, M.J. Fonseca, and J.A. Jorge, “JavaSketchIt: Issues in Sketching
the Look of User Interfaces”, Proc. AAAI’02 Spring Symposium – Sketch Understanding.

6. C. Calhoun, T.F. Stahovich, T. Kurtoglu, L.M. Kara, “Recognizing Multi-Stroke Symbols”,
Proc. of AAAI Sprint Symposium Series – Sketch Understanding, 2002.

7. T. Hammond and R. Davis, “Ladder: A Language to Describe Drawing, Display, and Edit-
ing in Sketch Recognition”, Proc. of IJCAI’03, 2003.

8. W. Liu, X. Jin, and Z. Sun, “Sketch-Based User Interface for Inputting Graphic Objects on
Small Screen Devices”, Lecture Notes in Computer Science 2390, pp.67-80, 2002.

A Novel Constraint-Based Approach to Online Graphics Recognition 113

9. J.K. Lee and K. Kim, “Geometric Reasoning for Knowledge-based Parametric Design using
Graph Representation'”, Computer-Aided Design, Vol.28, No.10, pp.831-841, 1996.

10. S. Ait-Aoudia, B. Hamid, A. Moussaoui, T. Saadi, “Solving Geometric Constraints by a
Graph-Constructive Approach”, Proc. of ICIV’1999, pp.250-255, 1999.

11. I. Fudos, C.M. Hoffmann, “A Graph-Constructive Approach to Solving Systems of Geo-
metric Constraints”, ACM Trans. on Graphics, Vol.16, No.2, pp.179-216, 1997.

12. Y. Luo and W. Liu, “A Case-based Interactive Approach to Graphics Recognition in Engi-
neering Drawings”, Proc. of GREC’2003, pp.170-181, 2003.

	1 Introduction
	2 Our Approach and Contribution
	3 Constraint-Based Representation of Graphic Objects
	4 Online Constraint Extraction
	5 Online Graphics Recognition
	6 Experimental Results
	7 Conclusion and Future Work
	References

