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Abstract. In this paper we show how Weighted Cone-Curvature (WCC) Models 
are suitable to carry out clustering tasks. CC is a new feature extracted from 
mesh models that gives an extended geometrical surroundings knowledge for 
every node of the mesh. WCC concept reduces the dimensionality of the object 
model without loss of information. A similarity measure based on the WCC fea-
ture has been defined and implemented to compare 3D objects using their mod-
els. Thus a similarity matrix based on WCC corresponding to an object database 
is the input of a fuzzy c-means algorithm to carry out an optimal partition of it. 
This algorithm divides the object database into disjoints clusters, objects in the 
same cluster being somehow more similar than objects in different clusters. The 
method has been experimentally tested in our lab under real conditions and the 
main results are shown in this work. 

1   Introduction 

Clustering is a well known topic in the image processing field. Roughly speaking, the 
clustering’s goal is to achieve the best partition over a set of objects stored in a data-
base in terms of similarity. For partitioning we need to extract or define features of 
each object in such a way as to be well characterized. Depending on how that infor-
mation was dealt with, several strategies of clustering can be found in the literature. 

Methods based on perceptual/functional organizations aim to make hierarchical 
procedures where the step from one level to another must be controlled in some way. 
A perceptual organization mechanism is developed by Sengupta and Boyer in [1, 2] 
where surfaces belonging to the same object are identified. A graph is constructed, 
each surface corresponding to a node in this graph.  Finally a partitioning scheme is 
carried out by comparing graphs corresponding to the objects. Selinger et al. argue 
that a single level of perceptual grouping is inadequate for recognition and use four 
levels of perceptual grouping [3]. In [4] a generic clustering scheme combining struc-
tural and functional approaches is presented. In this, a mapping of functionality to the 
primitive shape parts is the base for classifying objects. 
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Similarity-base clustering is a simple technique that uses a similarity measure to 
guarantee if two objects are similar enough to put them in the same cluster. The simi-
larity measure is usually defined through features of the object. In this sense, a good 
similarity measure is essential to carry out further clustering tasks. Lately, several 
works can be mentioned in this area. Yeung and Wang [5] introduce a similarity 
measure based on feature weight learning which is a reduction of the uncertainty 
existing in the clustering process. Thus clustering performance is improved. A sto-
chastic clustering algorithm over silhouettes is accomplished in [6] where, in order to 
obtain a silhouettes database, a large number of views of each object is processed. 
Then, a dissimilarity matrix is obtained and a clustering algorithm is run over it. Cyr 
and Kimia [7] measure the similarity between two views of the 3D object by a metric 
that measures the distance between their corresponding 2D projected shapes. Ohbuchi 
et al. [8] present a version of the shape functions proposed by Osada [9] for 3D po-
lygonal mesh models that allow them to make an efficient  shape similarity search. 

Lately we have developed a new strategy for 3D objects recognition using a flexi-
ble similarity measure based on spherical mesh models called Cone Curvature models 
[10, 11]. The difference between other strategies and ours is that we are able to com-
pare two objects taking any part of information of the mesh model. In this sense, it 
can be said that our method is ‘flexible’ to experimental specifications. Consequently, 
an adaptable (or flexible) similarity measure contrary to previous fixed similarity 
measures is defined in our case. Secondly, we have carried out a reduction of the 
dimensionality of the object representation. So, unlike other techniques, no redundant 
information but a synthetic characterization is used. This reduction notoriously sim-
plifies the volume of data handled in the model without loss of information and alle-
viates the computational cost of algorithms based on the model. 

Now we present the applicability of such a method for clustering where our simi-
larity matrix is the input of a fuzzy c-means algorithm. To show this we have struc-
tured the paper as follows. In Section 2,  Weighted Cone Curvature model is briefly 
described defining Cone-Curvature and Weighted Cone Curvature as features of the 
object. Section 3 is devoted to defining a similarity measure and presenting the clus-
tering algorithm. Clustering experimentation is dealt with throughout Section 4 pre-
senting the results of a set of the tests. 

2   WCC Models 

2.1   Cone-Curvature Feature 

Our solid representation model is defined on a mesh of h nodes from the tessellation of 
the unit sphere. Let TI be this initial spherical mesh and TM the mesh fitted to the object . 

For building TM, TI is deformed until it fits into the normalized surface of the object. In 

this process, mesh regularizing/smoothing tasks are also included. Then several geomet-
ric features are extracted from TM  and finally, mapped again into TI.  
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a) b)  c) 

Fig. 1. a) MW drawn over TI and a detail of WFs over TM. b) Definition of CCs. b) Visualiza-

tion of the CCs vector for a node N. 

On the initial tessellation TI, a topological structure called Modeling Wave (MW) [12] 

organizes the nodes of TI in disjointed subsets following a new relationship. In this sense 

a three-neighbour relationship is just a kind of local topology. Each subset contains a 
group of nodes spatially disposed over the sphere as a closed quasi-circle, resulting in 
subsets that look like concentric rings on the sphere. Since this organization resembles the 
shape of a wave, this has been called Modeling Wave (MW). Consequently each of the 
disjointed subsets is known as Wave Front (WF) and the first WF is called Focus. Of 
course, MW structure remains after the modeling process has finished. In other words, the 
WF structures remain in TM (see Figure 1 a)).  

From the previous definition it can be deduced that any node of TI may be Focus and, 

therefore, it can generate its MW. Therefore h different MWs can be generated. 
Although several kinds of features have been mapped into TI in previous works [12] in 

this case Cone-Curvature (CC) is defined as a new and intuitive feature based on the 
MW structure taking into account the location of the WFs inside the model TM. Its 

formal definition is as follows: 

Let N be Initial Focus on TM. We call jth Cone Curvature jα of N, the angle of 

the cone with vertex N whose surface inscribes the jth Wave Front of the Modeling 
Wave associated to N. 

The range of CC values is [-π/2, π/2], being the sign assigned taking into account 
the relative location of O, C j, and N, where O is the origin of the coordinate system 
fixed to TM and C j is the barycentre of the jth WF. Negative values are for concave 

zones, values next to zero correspond to flat areas and positive values correspond to 
convex zones. Figure 1 b) illustrates this definition.  

Note that a set of values {α1, α2, α3, …αq} gives an extended curvature informa-
tion around N until the qth WF, where the word ‘curvature’ has a non-local meaning. 
So for each node N a set of q values could be used for exploring its surroundings (see 
Figure 1 c)).  

On the other hand, it can be said that a vector C={c1, c2, c3 …cq} where 

[ ] q,...1j2/,2/T:c I
j =−→ ππ , q being the number of Wave Front considered, is 

established for all the nodes of TI. The whole Cone Curvature information is stored in 

a CC-matrix Θ, of hxq dimension. Note that Θ is invariant, unless row permutations, 
to changes in the pose of the object. 
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2.2   Weighted Cone Curvature 

Now we show a study for the dimensionality reduction of the CCs by defining a new 
feature called Weighted Cone-Curvature (WCC). To do that a principal component 
analysis must be carried out over the CC vectors. 

With the purpose of showing the degree of correlation existing between different 
curvature orders, correlation values for CCs from 2nd to 18th order are plotted in Fig-
ure 2 a) (notice that 1st order has no meaning). In this Figure, the correlation values 
are coded in grey levels (corresponding 0 to black and 1 to white). Each plotted value 
is computed as the average of the correlation values obtained for all the objects in the 
handled database (70 objects). It can be seen that, in general, there are very high cor-
relation values for near orders of CC. On the contrary, small correlation values are 
found between lower orders of CC (2nd and 3rd) and all the others. It is also noticeable 
from the same Figure the high correlation existing between the upper orders of CC. 

The meaning of h and q dimensions of the O CC-matrix could be explained as fol-
lows. The choice of a particular row N is equivalent to selecting the Focus of the MW 
whereas q provides CCs values corresponding to a specific depth; the higher order the 
more depth. 

Our purpose is to obtain a single value for each row of the O matrix from the 
analysis of the principal components performed on all the rows, so that each row is 
reduced to a single representative value (see Principal Component Analysis or Kar-
hunen-Loeve transform in [13]). Then, by means of the adequate linear combination, 
for each node N a single variable cw will fuse the q values provided by its CCs. 

Therefore, every node will have just a variable cw associated that is called Weighted 

Cone Curvature (WCC). Consequently, the O matrix is reduced to a vector C of hx1 
dimension. 

The variable Weighted Cone Curvature can be defined as a weighted combination 
of the different CCs given by the expression: 

∑ ⋅=
j

jj
w cvc . (1) 

The coefficients vj of the linear combination are the coordinates of the eigenvector 
associated to the highest eigenvalue of the covariance matrix for the set of indexes j 
considered. These coefficients have been empirically determined by evaluating the 
principal component analysis over the models of our object database in our lab. 

Note that different combinations of CC orders with respect to different criteria 
could be chosen. So, local, half, global, contiguous or discontiguous CCs could be 
chosen. That is why labeled our method as ‘flexible’. Because we are interested in 
using the CCs for partial views we have considered the CC of orders j=4,5,…9. This 
means to consider only the CC information near to the focus but filtering also the first 
two orders (which are sensitive to noise). 

The study of the principal components has been carried out over a database with 
70 objects. Figure 2 b) shows a plot of the highest eigenvectors. Each line corre-
sponds to the highest eigenvector obtained for a given object where the X axis repre-
sents the index and Y axis represents the eigenvector values. Very similar eigenvec-
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tors vj can be appreciated for most of the objects showing higher dispersion for the 
greater indexes. 

Finally, we consider the weighted array {vj} by computing the eigenvectors aver-
age obtained above. To evaluate the goodness of the dimensionality reduction an 
analysis of the percentage of the total variance that corresponds to the new variable is 
required. If a high percentage is achieved the new variable will satisfactorily explain 
the initial variables and the dimensionality reduction makes sense. In our study this 
percentage has been 95,34%. which means that the dimensionality reduction does not 
provoke any significant loss of information. Figure 2 c) shows, for all objects, the 
results of the percentage of the total variance that corresponds to the new variable cw. 

With these results it can be concluded that the dimensional reduction of the CC 
vector to a single variable cw is very appropriate because it adequately summarizes 

the information provided by the entire vector. Each node of TI will have a numeric 

value associated, called Weighted Cone Curvature, and the complete model can be 
characterized by the WCC vector C of h components. 

3   Clustering Based on Similarity Matrix 

In this section, a similarity measure for 3D shapes based-on WCC feature is firstly 
defined. After that the procedure of clustering is dealt with. 

Keeping the WCC concept in mind, a distance d between two models Ti and Tj  is 
defined as: 

∑
=

−=−=
h

k

jijiji kCkCCCTTd
1

2))()((),(                          (2) 

where Ci and Cj are sorted distributions of WCC vectors for both models.  
Once the distance d has been defined and considering a model database where D is 

the maximum distance, a binary relationship through a similarity function s is estab-
lished as follows. 

[ ]1,0: →× XXs       DTTdsTTs ji
ij

ji /),(1),( −==       (3) 

X being the model database. Thus we can define a Similarity Matrix S= (sij) which 

stores the whole similarity information for a database.  

a) b) c) 

Fig. 2. a) Illustration of the correlation between different CC values from 2nd to 18th orders, in 
the object database. b) Plots of the highest eigenvectors. c) Percentage of the total variance that 
corresponds to cw. 
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Roughly speaking, clustering procedures yield a data description in terms of clus-
ters or groups of data points that possess strong similarities [14]. In our case, we have 
an object database H that we want to divide in groups of objects. We may consider H 
as a set of n unlabelled samples x1, x2, …xn where xi is a feature vector of the ith 

object. For us, every object is characterized by the vector of similarity values with 
respect to the rest of the objects so xi=(si1,….sin). Note that xi corresponds to ith row 

into the Similarity Matrix S. Therefore the clustering procedure would be to divide H 
into p disjoint subsets H1, H2,…Hp, samples in the same cluster being somehow more 

similar than samples in different clusters.  
Once we fix the clustering and similarity measurement problems, we are obliged 

to evaluate the partitioning. Then, the problem is one of finding the partition that 
extremizes a criterion function. For that we have used the fuzzy c-means function, 
which is a variation of sum-of-squared-error criterion. Although complete informa-
tion about this can be found in [15], we will make a brief reference to this criterion 
function. 

For a given integer p>1 and real m>1, the criterion function to be minimized is 
defined as follows: 

∑ ∑
= =

−=
p

i

n

k
ik

m
ik mxuJ

1 1
)(          (4) 

where mi is the mean vector in Hi, |x| denotes the Euclidean norm of x and uik is the 

ith membership function on the kth sample xk to the cluster Hi. The vectors m1, …,mp 

can be interpreted as prototypes of cluster (called cluster centers). So, high member-
ships occur for samples close to the corresponding cluster centers. The number m is 
called the exponent weight and is used to control the contribution of the samples to J 
depending on their memberships values. Once chosen p and m, an iterative procedure 
recomputes mi and uik until a local minimum of J is achieved. 

4   Experimental Tests 

Taking our similarity measure as the basis of the clustering procedure, we have 
evaluated it by carrying out several tests for different sets of objects. This experimen-
tation has been accomplished with 41 free form objects sensed in the lab where dif-
ferent people participated in their election. Curiously, there were different opinions 
for establishing the clusters a priori. Obviously the choosing of natural groups was 
not completely clear for us. Finally we grouped the objects in sub-sets that we have 
labeled as: cubes (1-6), prisms (7-9), round shapes (10-13), cars (14-17), polyhedral 
(18-23), free shapes (24-29), cone shapes (30-36) and cylinders (37-41) (Figure 3). 
The goal of our experimentation is to know what the performance of our method in 
real environments is and what concordance exists between the clusters computed with 
the clusters established a priori. 
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In order to graphically illustrate the Similarity Matrix S we have presented it as a 
two dimension grey map where the grey level goes from 0, plotted as white, to 1, 
plotted as black. This election, that seems illogical, has been adopted in order to 
achieve better visualization. Note that reflexive (black diagonal) and symmetrical 
properties can be clearly seen on it. Looking at the grey levels for the ith row we can 
check the feature vector (called xi in section 3) which is the similarity vector. Making 

a visual analysis of S we can sometimes appreciate dark grouping zones for a set of 
rows (or columns indistinctly). These groups might be thought of as candidate clus-
ters. 

 

 

Fig. 3. Objects. 

When a set H of n objects (samples) x1, x2, …xn  is considered, each object xi is 

inside a n-dimensional space (xi has n components) and therefore the resulting cluster 

is in a n-dimensional space. In order to graphically show the clusters we have in-
cluded two-dimensional projections of that space (corresponding to first and last 
dimensions). 

Table 1 summarizes the results obtained for twelve tests. For each test, a set of ob-
ject H belonging to different groups are chosen. Then the clustering algorithm is run 
and clusters H1,…,Hp are computed. The number of cluster p is set taking into ac-

count the mean values of the membership functions of the objects in their respective 
clusters (denoted as u in the table). In the first column the name of the groups set a 
priori appears and last rows shows the cases where an object is put in an unexpected 
cluster. 

There are cases where clustering results coincide quite well with the natural groups 
(test nº: 1, 3, 7, 10). For example in Test nº1, the three clusters correspond to cubes, 
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round shapes and polyhedral. This grouping can be seen clearly in the Similarity 
Matrix (Figure 4 above) because three disjointed dark zones appear. On the right, 
four groups are also evident in the Similarity Matrix corresponding to Test nº3. 

On the other hand, when the number of cluster is forced to be less than the number 
of initial groups, cases exist where two groups are put in the same cluster (test nº: 2, 
4, 5, 6, 8, 9, 11 and 12). Nevertheless, a coherent clustering is made in such cases. 
Test nº 2 is a good example confirming that. In this case H is formed by cars, polyhe-
dral, cones and cylinders. When the clustering procedure is executed for p=3, cones 
and cylinders are put in the same cluster. Figure 4 below shows the nearness of such 
groups. Test nº 4 is a more complex case where this coherence can also be seen. 

Table 1. Results for tests. 

Test 1 2 3 4 5 6 7 8 9 10 11 12 
p 3 3 4 4 3 2 3 3 3 3 3 5 
u 0.93 0.92 0.72 0.81 0.90 0.86 0.88 0.88 0.82 0.85 0.84 0.76 
n 16 20 18 37 37 18 19 19 23 11 22 41 
Cubes  H1   H1 H1 H1 H1    H1 H1 
Prisms   H1 H1 H1   H1  H1 H1 H1 
Round shapes H2 H1  H2 H2   H2  H2 H2 H2 
Cars  H2 H2      H1 H3 H3 H3 
Polyhedrals H3   H3 H3  H2 H3 H1   H3 
Free shapes   H3 H3 H3   H3 H2   H4 
Cones  H3  H4 H1 H2 H3  H3   H5 
Cilinders  H3 H4 H4 H1 H2     H1 H5 

Unexpected cases 19→H1  24→H2 
37→H1 

19→H1 
19→H1 37→H1 19→H1 19→H1 24→H1   

19→H1 

37→H1 

24→H3 

17→H1 

 

 
                                                 Test Nº1                                                                         Test Nº3 

 
                                         Test Nº 2                                                                        Test Nº4. 

Fig. 4. Clustering results. 
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In conclusion, it can be said that the method has worked in a real environment 
which implies working with noise and error sources. None of the experiments has 
given unexpected clustering; on the contrary the clustering algorithm has given re-
sults according to the human grouping established by us. Nevertheless, we have 
started several initiatives to improve the method concerning to increase the database 
and deal with the problem of the validity of the clusters. 
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