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Abstract. For many clustering algorithms, it is very important to determine an 
appropriate number of clusters, which is called cluster validity problem. In this 
paper, we offer a new approach to tackle this issue. The main point is that the 
better outputs of clustering algorithm, the more stable. Therefore, we establish 
the relation between cluster validity and stability of clustering algorithms, and 
propose that the conditional number of Hessian matrix of the objective function 
with respect to outputs of the clustering algorithm can be used as cluster valid-
ity cluster index. Based on such idea, we study the traditional fuzzy c-means al-
gorithms. Comparison experiments suggest that such a novel cluster validity in-
dex is valid for evaluating the performance of the fuzzy c-means algorithms.  

1   Introduction 

Cluster analysis plays an important role in pattern recognition fields. However, the 
outputs of clustering algorithms are sensitive to parameters of the clustering algo-
rithm. Sometimes, the same algorithm can lead to totally different outputs with re-
spect to different parameters. A good clustering algorithm could produce undesirable 
results if parameters are chosen improperly. In the literature, many researches have 
been done on how to choose the optimal parameters in the clustering algorithms, 
particularly on how to choose the optimal number of clusters, for example, [1-4]. In 
general, selection of appropriate number of clusters and evaluation of outputs of clus-
tering algorithms are called cluster validity problem.  

In the literature, how to choose the optimal number of clusters depends on specific 
clustering algorithm. Many results on this issue are relevant to c-means or fuzzy c-
means, for example, [1-4]. As for cluster validity for the FCM, one common ap-
proach is to design a cluster validity index to evaluate the performance of clustering 
algorithms. Frequently, there are two ways to design cluster validity index. One is 
based on the concept of fuzzy partition, the main assumption is that the performance 
of the FCM is better when its outputs are closer to crisp partition, for example, parti-
tion coefficient [2], partition entropy [5], uniform data functional [6], proportion 
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exponent [7], nonfuzziness index [8], etc. However, as noted in [9], they lack of di-
rect connection to the geometrical property of data set. Taking into account geometri-
cal property results in another way to design cluster validity index, for instance, Xie-
Beni index [9], Gunderson’s separation coefficient [10], etc. In fact, the above cluster 
validity indices have the similar drawback, i.e., all of them do not pay enough atten-
tion to the property of the FCM itself.   

From a point of algorithmic view, it is necessary to study the properties of cluster-
ing algorithms in order to determine number of clusters and evaluate clustering re-
sults. 

Speaking roughly, given that data set truly follows the assumption of clustering al-
gorithm, the probable outputs of a clustering algorithm should be the optimal cluster-
ing results. Obviously, it is a reasonable assumption. Otherwise, it has little chance to 
obtain the optimal clustering results no matter what cluster validity index is used. 
Therefore, we need to measure the probability of occurrence with respect to different 
outputs produced by clustering algorithm. It is easy to conjecture that clustering re-
sults with high stability are outputted with large probability. Therefore, we need to 
obtain and study the stability criterion of clustering algorithm. In the following, we 
study cluster validity for the FCM according to the above idea.  

The reminder of this paper is organized as follows: In Section 2, the FCM and rele-
vant cluster validity indices are related. In Section 3, a new cluster validity index, 
stable index, is defined and analyzed.  In Section 4, numerical experiments are carried 
out to make a comparison between Xie-Beni index and our cluster index, and experi-
mental results are analyzed. In the final, we draw conclusion and make a discussion. 

2   The FCM Algorithm and Related Cluster Validity Indices 

Let X={x1,x2,…,xn} be a s-dimensional data set, u={uik} is partition matrix, 

v={v1,v2,…,vc} is clustering prototype, the objective function is defined as 
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By Lagrange multiplier’s approach, we obtain the necessary conditions for the 

minimum of ( )XvuJ m ,,  as: 
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Consequently, the procedure of the FCM is described as follows: 
Step 1. Fix the number of clusters, the weighting exponent, the iteration limit T and 

the tolerance ε , and set ( )XvuJ m ,, = ∞ ; initialize the partition matrix; 

Step 2. Update the cluster center iv  (1 ci ≤≤ ) by (1) ; 

Step 3. Update the membership function iku  (1 ci ≤≤ , nk ≤≤1 ) by (2); 

Step 4. Repeat Step 2 and Step 3 until the decreasing value of ( )XvuJ m ,,  between 

two successive iterations is less than ε  or the iterations reach T.  

The objective function of the FCM can be reduced to (3) by (2), which is obtained 

by Bezdek in [11] as follows:  ( )vXJ m ,
mn
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It has been proved that the above algorithm converges to local minimum or saddle 

point of the objective function of the FCM when m>1. Let ∑ =
−= n

k kxnx
1

1 , when m 

approaches infinite, the only solution of the FCM is x  according to [1]. It is easily 
proved that x  is a fixed point of the FCM algorithm. 

As the clustering results of the FCM are greatly influenced by the weighting expo-
nent, number of clusters, etc, it is a key issue for users to properly evaluate the clus-
tering results of the FCM algorithm.  In the literature, many methods are proposed to 
tackle this issue. One of the most used methods is to design an appropriate cluster 
validity index; Halkidi et al presented a well-written review of cluster validity indices 
in [12]. As noted in [1], many cluster validity indices like ( )uVpc  or XBV  have a 

monotone tendency with number of clusters increasing. Hence, it is always supposed 

that the optimal number of clusters has an upper bound nc ≤max , more details can 

be seen in [13]. In [1], Pal and Bezdek evaluated that the partition coefficient and 
entropy index, Xie-Beni Criterion, extended Xie-Beni Criterion, and the Fukuyama-
Sugeno Index [14] by numerical experiments and limit analysis. They experimentally 
discovered that Xie-Beni Criterion provided the best response over a wide arrange of 
choices for number of clusters c and weighting exponent m, and the Fukuyama-
Sugeno Index is not robust to both high and low values of weighting exponent m and 
its performance may be not stable as cluster validity index. Therefore, we use Xie-
Beni index as benchmark of cluster validity index for the FCM algorithm in the fol-
lowing. As a matter of fact, we have another theoretical explanation of choosing a 
Xie-Beni index as benchmark of cluster validity index, more details will be given in 
Section 3. 
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3   A Novel Cluster Validity Index-Stability Index 

As noted above, many cluster validity indices for the FCM algorithm have been pro-
posed in the literature. However, all of them do not pay enough attention to the prop-
erties of the FCM algorithm. In this paper, we propose a novel cluster validity index 
based on the properties of the FCM algorithm itself. It is a reasonable assumption that 
the probable clustering output is the optimal clustering result of clustering algorithms 
if the data set complies with its clustering hypothesis. Obviously, the more stable the 
clustering result is, the more probable it is outputted. Therefore, we need to obtain 
stability criterion of clustering algorithm.  Transparently, the stability criterion of a 
clustering algorithm depends on its optimality test. Fortunately, the optimality test of 
the FCM algorithm has been given in [15] or [16] as: 
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Hessian matrix vH of ( )vF can be represented by ( )( )jiv vvvFH ∂∂∂= 2 . It is well 

known that vH can judge whether the clustering result is stable or not, i.e., if the 

clustering result is a local minimum of the objective function. However, how to meas-
ure the probability the clustering result v  is outputted?  It is easy to conjecture that 
the stable degree of a clustering result is proportional to the probability the clustering 
result v is outputted. Therefore, we need to define an index to measure the stability of 
a clustering result. Since the conditional number of Hessian matrix vH  reflects the 

stability of Hessian matrix vH , it can be reasonably used as an index to show the 

stability of a clustering result. In order to clearly visualize the experimental results in 
this paper, we use an ad hoc definition of the conditional number of Hessian matrix as 
follows: ( ) ( )vvv HHHcond maxmin)( λλ= , where ( )vHmaxλ , ( )vHminλ  are the 

maximum and the minimum eigenvalues of vH , respectively. 

If ( )vHcond≥1 >0, the clustering result of FCM is stable; if ( )vHcond <0 or 

( )vHcond >1, the clustering result of FCM is unstable. Therefore, we call ( )vHcond  

stability index. Obviously, if ( )vHcond≥1 >0, the larger ( )vHcond , the more stable 

the clustering result, therefore the more probable it is outputted. In other words, 
( )vHcond  can measure the probability of a clustering result outputted by its corre-

sponding algorithm. According to the above analysis, ( )vHcond  can be used as clus-

ter validity index to choose the optimal number of clusters.  
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According to [17], undesirable solutions of clustering algorithm can be defined as 
follows: if ( )cvvvv ,,, 21 �=  is an output of clustering algorithm and 

∃ cji ≤≠≤1 such that ji vv = , then it is called undesirable solutions of clustering 

algorithm. Noticing that Xie-Beni Criterion (in this paper, Xie-Beni Criterion and 
Xie-Beni index are interchangeable) is defined as: 

( ) 
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So, we can use Xie_Beni index to determine whether or not outputs of the FCM 
are undesirable solutions. But others cluster indices can not well conduct this task. 
For example, Fukuyama-Sugeno Index [14], partition coefficient [2], partition en-
tropy [5], uniform data functional [6], proportion exponent [7], nonfuzziness index 
[8], Gunderson’s separation coefficient [10]. Noticing the value of Xie_Beni index is 
infinite when outputs of the FCM are undesirable solutions, we use the following 
form instead of Xie-Beni index, which is convenient for calculation and visualization 

in the computer and denoted by 1−
XBV :   
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In Section 4, we verify the above conclusions by numerical experiments. 

4   Numerical Experiments and Analysis 

In this section, we verify the above conclusions by numerical experiments. In the 
following, we set the same initial partition matrix, ε =10-8 and the maximum iteration 
T=200 for the FCM algorithm, and run the FCM algorithm with different weighting 

exponent m and number of clusters c, then calculate 1−
XBV  and ( )vHcond  according to 

the clustering outputs. 
The datasets used in this section are described as follows: 

IRIS data: The Iris data set has 150 data points. It is divided into three groups and 
two of them are overlapping. Each group has 50 data points. Each point has four 
attributes. More details about the IRIS data are available in Anderson [18]. 

Cube_6. This data set is drawn as in Fig.1 (a), and consists of 6 clusters. Each clus-
ter consists of 8 points located at 8 corners of a cube. More details about Cube6 
can be seen in [16]. 

Data 3: Data are composed of 4 clusters as shown in Fig.1 (b). The cluster centers 
are as follows: =1µ  [-4, 4]; =2µ [5, 5]; =3µ [14, 5]; =4µ [20, -3]. Each cluster 

includes 100 points and the points in the ith cluster are independently drawn from 
the normal distribution ( )2, IN iµ .   
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Fig. 1. (a) Cube 6, (b) Data 3 
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Fig. 4.  1−
XBV  with varying c and m for Data 3. In the left, the weighting exponent varies from 

1.05 to 4.05, 1−
XBV  shows that the optimal number of clusters is 4, which is consistent with the 

real substructure of Data 3. However, in the right, the weighting exponent varies from 4.25 to 

7.05, 1−
XBV  shows that the optimal number of clusters becomes 2. According to [19], we know 

the FCM algorithm works well for m>1, at least in theory. It easily demonstrates that the per-

formance of 1−
XBV  sometimes heavily depends on the weighting exponent m in the FCM algo-

rithm. 

 

Fig. 5. Stability index with respect to c and m, and datasets 

When m>1, Fig.5 demonstrates that the outputs of the FCM algorithm are local 
minimum of (3) with probability close to 1, and the performance of ( )vHcond  as 

cluster validity index is the same as Xie-Beni index. We also know that weighting 
exponent m plays a key role in the FCM algorithm. In [19], it is proved that if 

( ) 5.0*max <
dataU

Fλ  and ( )( ) 1
max *21 −−≥

dataU
Fm λ , then *

dataU  is a stable fixed point of the 

FCM, and if ( ) 5.0*max ≥
dataU

Fλ , then *
dataU  is not a stable fixed point of the FCM, 
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It is easy to calculate that ( )IRISFmaxλ =0.8079, ( )6max CubeFλ =0.3333 and 

( )3max DataFλ =0.7036. Therefore, we know that m<3 should hold in order to keep the 

FCM algorithm work well on Cube 6 according to [19]. Since 
( )IRISFmaxλ =0.8079>0.5 and ( )3max DataFλ =0.7036>0.5, any value of m>1 is theoreti-

cally appropriate for the FCM algorithm.  
Fig. 2, 4 verify that the FCM algorithm may not outcome undesirable solutions 

when ( ) 5.0*max ≥
dataU

Fλ . However, Fig.3 tells us that the FCM algorithm indeed out-

comes undesirable solutions when ( ) 5.0*max <
dataU

Fλ . Simultaneously, Fig.5 empiri-

cally proves that the outputs of the FCM algorithm are local minima, which is consis-
tent with our intuition. As for IRIS and Cube6, the performances of ( )vHcond  and 

Xie-Beni index are the same with respect to a wide range of the weighting exponent 
m. As for data3, Fig.4 shows that Xie-Beni index is sensitive to high values of the 
weighting exponent m. However, Fig.5 shows that the performance of ( )vHcond  is 

still satisfactory with respect to a wide range of the weighting exponent m. Such facts 
suggest that ( )vHcond is more robust than Xie-Beni Criterion with respect to m as 

cluster validity index.  

5   Conclusions and Discussions 

In this paper, we propose a novel cluster validity index for the FCM algorithm, the 
stability index, based on the optimality test. The major contribution of this paper is 
that our approach is totally out of mathematical analysis of the FCM algorithm, while 
other previous methods out of geometrical or psychological tuition. The theoretical 
analysis and experimental results suggest that the stability index is valid for the FCM 
algorithm as a cluster validity index. Moreover, the stability index also can be used as 
the optimality test of the FCM algorithm. 
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