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Abstract. Cascades of boosted classifiers have become increasingly pop-
ular in machine vision and have generated a lot of recent research. Most
of it has focused on modifying the underlying Adaboost method and far
less attention has been given to the problem of dimensioning the cascade,
i.e. determining the number and the characteristics of the boosted classi-
fiers. To a large extent, the designer of a cascade must set the parameters
in the cascade using ad-hoc methods.

We propose to automatically build a cascade of classifiers, given just a
family of weak classifiers a desired performance level and little more.
First, a boosted classifier with the desired performance is built using any
boosting method. This classifier is then “sliced” using dynamic program-
ming into a cascade of classifiers in a nearly computation-cost-optimal
fashion.

1 Introduction

Boosting, [5, 17] combines the output of many weak classifiers - ones that perform
slightly better than guessing [11]. By increasing the number of weak classifiers,
arbitrarily small error rates can be reached on a training set. For example, one
can achieve very good face recognition by combining hundreds of very simple
classifiers [21]. However, the computational complexity increases linearly with
the number of weak classifiers. If the target application has few true positives,
as is the case in face detection, running such a big boosted detector would be
an overkill, since, as shown by Viola and Jones [21], most true negatives can be
rejected easily, using a small boosted detector. Their approach was thus to build
a cascade of increasingly discriminative detectors, resulting in a face detector
with performance similar or better to that of previous approaches [16, 18] while
being computationally much less demanding.

Since then, cascades of classifiers have become increasingly popular [9, 10,
6]. Moreover, the methodology in [21] is not specific to face detection and was
effectively applied to other cases [3]. The designer of a cascade does not need
an advanced task-specific classifiers, although doing so can improve the overall
performance of the system.

Many variants of [21] of have been developed. In most, the research effort
focuses on employing better boosting methods. Viola and Jones [20] adapt Ad-
aboost to the case of different misclassification costs for false positive and false
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Algorithm 1 Cascaded classifier.
Given: Weak classifiers h1 () , . . . , hT () and weights provided by a boosted classifier

HB (X), cascade schedule 1 = T0 < T1 < . . . < TL = T + 1 and thresholds
θ1, . . . , θL.

Input: Vector X

Initialization: Set l = 1,η = 0
While l ≤ L

1. Set η = η + αTl−1hTl−1 (X) + . . . + αTl−1hTl−1 (X)
2. If η < θl, classify X as a negative, i.e. H(X) = −1. Exit.
3. Set l = l + 1.

Classify H (X) = sign (η).

negatives. Li et al [8] modify Adaboost to obtain better performance using less
weak classifiers, resulting in better performance on the training set and lower
run-time complexity, but increased training time. Wu et al [6] and McCane and
Novins [12] reduce drastically the training time1 at the cost of slightly reduced
performance. Little science, in contrast, has been applied to the characteristics
of the boosted classifiers in a principled manner : empirical guidelines are given
in [21] and by Lienhart et al [10] to dimension the intermediate classifiers of the
cascade. McCane and Novins [12] propose a method to do this automatically and
we will discuss their method further in this article. The present article proposes
another such method.

We argue that choosing the characteristics of the classifiers in the cascade
- whether it be number of weak classifiers or error rates - is the fundamental
problem. After all, the main difference between a cascade and a single big boosted
algorithm is precisely this architecture, which allows to reject true negatives early
and thus reduce the computation load.

In the present work, we propose to build a cascade from a single big boosted
classifier. The -very simple- idea is to compute a subset of weak classifiers of the
big boosted classifier and test whether the input is positive or negative. If it is
positive, compute another subset of weak classifiers and test again. We continue
this way until the input is rejected or the complete boosted classifier has been
computed. The resulting classifier algorithm is shown in Algorithm 1.

Some properties of the proposed method are easily seen. Most importantly,
the set of positive inputs of the proposed classifier H (X) is included in that of
the boosted classifier HB (X) on which it is based. The true positive ratio of
H (X) is thus smaller than that of HB (X) and its true negatives is higher. The
point in “ROC space” corresponding to H (X) is thus below and on the left of
the point corresponding to HB (X).

This algorithm shows a clear resemblance both with Adaboost, for the choice
of weights and with the cascaded classifiers cited above. Figure 1 compares graph-
ically the three architectures considered so far. In Adaboost (a), all weak classi-

1 Viola and Jones mention weeks of training time.
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fiers are computed at once, whereas in the proposed method and in the cascade
of [21], only a subset of the weak classifiers is computed between each test. The
difference between the proposed method (b) and [21] (c) is that in the former,
the output the previous classifiers is kept to contribute to the input of the next.
As a result, the output of the last classifier in (b) is exactly the same (assuming
the weights and weak classifiers are the same, which is the case) as that of the
boosted algorithm (a).
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Fig. 1. Comparison of classifier architectures. The difference between adaboost (a) and
(b,c) is that in the later, negative classification can be achieved after just a few weak
classifier evaluations. The difference between the proposed method (b) and the cascade
of [21] (c) is that the output of previous stages of decision is taken into account at each
decision (bold arrows in (b)).

Going back to Algorithm 1, one sees that the output of H (X) is defined by
the weak classifiers h1 (X) , . . . , hT (X) and weights α1, . . . , αT that define the
boosted classifier HB (X), but also by the schedule T1, . . . , TL and thresholds
θ1, . . . , θL of the tests. The choice of the Tl and θl is determinant to obtain a
computationally efficient classifier and at first sight, this it may appear that
setting these parameters is as hard as setting the parameters for a cascade of
classifiers. However we will see that, using dynamic programming, it is possible
to set these parameters in a way that:

a) Preserves the output of the boosted classifier on any given data set, e.g. on
the training set of the boosted classifier.

b) Nearly optimal in terms of the computational cost of the classifier, amongst
all cascades that verify a).

Another benefit of the proposed method is that it is easier to choose the true
positive and negative rates of the detector. Indeed, in a boosted classifier, there
is a unique threshold that determines the point on the ROC curve on which the
classifier lies. It is sufficient to set this threshold prior to building the cascade
to guarantee that the cascade will achieve this point of the ROC curve (for the
given dataset). Since the computation cost of building the cascade is negligible
with respect to that of boosting, it is easy to build classifiers for any point on the
ROC curve achievable by the original boosted algorithm. In contrast, previous
cascading methods would either require to train a new cascade for each desired
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Algorithm 2 Cascade building procedure.
Assume given

– A family of weak classifiers h (X) a dataset X1, . . . , XN and y1, . . . yN .
– Target false positive and true positive ratios for the classifier.
– An estimate of the proportion P0 of positives in the targeted real-world input.
– An estimate of the computational cost of the weak classifiers and of performing a

test on the targeted computer architecture.

The cascade is obtained by:

Boost the weak classifiers and build its ROC until the targeted performance or better
[14] is attained.

Build a computationally-optimal cascade with the architecture of Alg. 1 that has
exactly the same output as the boosted classifier on the training data.

ROC point, or use an ad-hoc method to adjust the thresholds of the boosted
classifiers.

Also, the proposed cascading method is not limited to a particular boosting
method. It is possible to use a boosted classifier specialized for a given cost
metric [4, 20, 13] or aimed at being computationally more efficient [8]. In the
present work, we will use the most studied Adaboost method [17, 11].

The proposed procedure for building a cascade of classifiers is described in
Algorithm 2.

Note that we assume the proportion of true positives P0 in the targeted
real-world application is approximately known. This proportion is usually not
known precisely, but one knows that positives are a small minority - without
this assumption, the whole cascade architecture stops making sense. We will see
below that the exact value of P0 does not influence greatly the resulting cascade.

Also, it is assumed that the computational cost of the weak classifiers is
known, as well as the computational cost of performing the test in Algorithm 1.
These quantities can be determined experimentally by benchmarking the tar-
geted computer system. We do not assume that the cost of a test is negligible,
as the cost of the weak classifiers may itself be very low.

We model explicitly the computational complexity of the classifier and de-
termine a nearly optimal cascade amongst all cascades derived from a given
boosted classifier. Although there exists work that considers the cost of evaluat-
ing a classifying tree [19], we are only aware of McCane and Novins who adopt
[12] a similar approach to build a computationally near-optimal cascade of de-
tectors. However, [12] assumes an approximate model for the computational cost
of a boosted classifier as a function of its false positive rate. Also, they need to
consider every possible (plausible) cascade length separately and determine, by
numerical optimization, sub-optimal parameters for each. In contrast, we obtain
the nearly-optimal sequence using very few assumptions and with very little
computation, by using dynamic programming.
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2 Computationally Optimal Cascade Design

We assume having a boosted classifier that achieves desired true positive and
true negative rates on a given dataset. This can be done boosting a family of
weak classifiers. until the ROC curve of the classifier passes above the desired
true positive and negative ratios.

At this point, we have a boosted classifier HB (X) defined by weak classifiers
h1 (X),..., hT (X) and weights α1, . . . , αT :

HB (X) =
{

1 if
∑T

t=1 αtht (X) > 0
−1 otherwise.

Additionally, we are given a dataset X1, . . . , XN , with known classes y1, . . . , yN

(yn ∈ {−1, 1}). Define I+ (resp. I−) the set of indices n such that HB (Xn) = 1
(resp. −1).

2.1 Choice of Thresholds θ1, . . . , θL

Consider an algorithm as in Alg. 1, characterized by the test schedule T1, . . . , TL

and thresholds θ1, . . . , θL. Define the intermediate real-valued classifiers:

Gt (X) =
t∑

s=1

αshs (X) (1)

Define thresholds θ′t for each 1 ≤ t ≤ T so that Gt (Xn) > θ′t for all the positive
examples n ∈ I+:

θ′t > min
{
Gt (Xn) | n ∈ I+

}
. (2)

In practice, we may usually set θ′t to the midpoint between the value above and
the smallest Gt (Xn) that is greater than Eq. (2) and n ∈ I−.

We will set
θl = θ′Tl

. (3)

It is clear that, with this choice, and independently of the T1, . . . , TL, the cascade
defined in Algorithm 1 has the same output as the original boosted algorithm
on the training data.

2.2 Computational Cost Model

The proportion of true positives and false positives that are accepted at level2 t
is estimated by:

pt = # {n | yn = 1 andGt (Xn) > θ′t} /# {n | yn = 1}
rt = # {n | yn = −1 andGt (Xn) > θ′t} /# {n | yn = −1} .

2 We will call levels 1 ≤ t ≤ T the indices of the weak classifiers that constitute the
boosted classifier.
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where # denotes the cardinal. Assuming that the proportion of positives in the
real-world input is P0, the proportion of real-world inputs that are accepted at
level t is approximately:

qt = P0pt + (1 − P0) rt. (4)

We assume in the following that q is decreasing in t. Although this is not
necessarily true in the training data, the true ratio can be expected to be
monotonously decreasing.

Now, considering any cascade of the type of Algorithm 1, the expected com-
putation cost for a real-world input is approximately:

C = (A1 + B) + (A2 + B) qT1 + . . . + (AL + B) qTL , (5)

where
Al =

∑
Tl−1≤t<Tl

At,

At is the computational cost of the tth weak classifier and B is the cost of
performing a test on the targeted computer.

2.3 Optimal Test Schedule T1, ..., TL

We now show that the optimal computational cost is obtained efficiently using
dynamic programming [2], because the cost Ct of the optimal cascade starting
at level t ∈ {1, . . . , T} is can be defined recursively from the costs Cs>t.

The optimal cascade starting at t is necessarily one of the following: (1) the
trivial cascade consisting in computing all the remaining classifiers and testing
the result; (2) the cascade consisting in computing classifiers t, . . . , T − 1 per-
forming the test at T −1 and following the optimal sequence from T −1 to T ; ...
; (T − t+1) computing the tth weak classifier, testing and following the optimal
sequence from t + 1 to T . The costs of each possibility is:

Ct,T = qt (At + . . . + AT−1 + AT ) + 0
Ct,T−1 = qt (At + . . . + AT−1) + CT

...
...

Ct,t = qtAt + Ct+1

(6)

The optimal cascade cost and optimal “jump” at t are thus:

Ct = min {Ct,s | t < s ≤ T } , St = 1 + args min {Ct,s | t < s ≤ T } . (7)

From there, the optimal cascade sequence is:

T0 = 1, T1 = S1, T2 = ST1 , . . . , Tt = STt−1 , . . . , TL = T + 1. (8)

Note that it is not necessary to specify the length of the optimal sequence.
Also, the resulting cascade does not depend on the proportion of true and false



Automatic Design of Cascaded Classifiers 989

positives in the training data, but on the expected proportion P0 of positives in
the real-world data.

The dependence on P0 is itself quite mild : the terms in Eq. (6), can be
developed as affine expressions of P0 with coefficients depending on pt, rt, At

and B in which the constant term is proportional to the false positive rate rt.
Near the end of any cascade, the cost is thus, nearly linear in P0 and the optimal
cascade does not depend on P0. Even earlier in the cascade, when rt is greater,
we have found that the optimal sequence does not vary greatly with P0.

Finally, on should note that the obtained scheduling is optimal only if the
series qt defined in Eq. (4) is decreasing, which is not necessarily the case for
a given dataset, although this is the expected behaviour of the boosted clas-
sifier. We found that in practice, these series are not monotonous, and that
some smoothing could be applied3. However, since the general tendency of the
unsmoothed series is monotonous, we consider that the cost of the resulting
sequence is near the true minimum.

3 Experimentation

This section, presents experimental validation for the theory developed above.
For this purpose, we use a face classifier still in development, which uses the
same Haar filters as [21]. The training dataset consists in 2000 face images taken
from the BioID database [7], from dataset C of the CMU database [15] and from
images gathered on the internet. All face and non-face images were scaled to 18-
by-31 pixels and were normalized in variance and range. Images from the BioID
database were cropped repeatedly at slightly different positions and scales. A
validation dataset of 5000 other images is built in the same way. On our computer
system, it was found that the cost A of weak classifiers is approximately 40 times
that of performing a test and this value is used in the sequel.

Comparison of performance of boosted classifier and cascades. In this experi-
ment, a boosted classifier4 consiting of T = 100 weak classifiers is built using
the training dataset and its ROC is computed using the validation dataset. Only
points on the upper convex hull of the ROC curve are kept. For each non-trivial
vertex of the ROC, the corresponding cascaded classifier is built, using the train-
ing dataset and assuming P0 = 0.001. The cascades have from 29 to 37 levels
(average: 34.1).

Figure 2 (left) shows part of the ROC curve of the boosted classifier (topmost
curve) the curve linking linking the performances of the cascaded classifiers ob-
tained from the boosted classifier with the thresholds of the ROC vertices. The
lower dotted ROC is that of the boosted classifier truncated at the 34th weak
classifier, having thus similar computation cost as the cascades. This experiment
shows the performance of the cascade is very close to that of the underlying
boosted classifier, while decreasing the average computation cost very much.
3 We do not use any in the experimental section, unless otherwise specified.
4 We use an unpublished boosting method inspired of [1] and [20] adapted to unequal

importances of false positives and false negatives.
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Fig. 2. Left: Detail of ROC of boosted (plain line), cascaded classifiers (dashed) and
boosted classifier with same cost as cascades (dotted). Right: Relative computational
cost of cascade w.r.t. original classifier v.s. false positive rates.

Figure 2 (right) shows the computational cost of the cascade, assuming that
P0 = 0.001 divided by that of the original boosted classifier. The dotted curve
is the expected value determined while constructing the cascade, while the the
dashed curve above is the value observed on the validation dataset.

Since P0 is very low, it is natural to set the classifier with a very low false
positive rate, to avoid being overwhelmed by false positives. Figure 2 (right)
shows that in this condition, the empirical and theoretical compuation costs are
very similar and that they are at their lowest.

Architecture of cascade with varying P0. In this experiment, the cascade is built
for P0 ∈ {

1/101+i/2 | 0 ≤ i ≤ 6
}

with a fixed boosted classifier (T = 100) and
input data. This experiment showed that the schedule is the same for nearly all
cascades, with those with higher levels of P0 skipping some tests. This confirms
our claim that the value of P0 is not determinant in the resulting cascade.

4 Discussion and Conclusions

We have proposed a method to automatically design a cascade classifier with a
desired performance, targeted for a given type of input and a given computer
architecture. This methodology applies to any underlying boosting method,
whether the best-known algorithm of Schapire and Singer [17] or, as was the
case in the experimental section, a boosting method targeted at a given region
of the ROC space. Since the resulting cascade is so closely related to its un-
derlying boosted classifier, we can expect that the theoretical properties of this
cascade will be easier to study than that of ad-hoc cascades and that this would
be a step towards being able to set the generalization bounds of the cascade,
rather than its performance on a given dataset.

Future research is required to find ways of setting the thresholds of the cas-
cade levels so as to follow the ROC of the original classifier better still than was
shown in the experimental section. Another direction of research is to better
estimate the proportion ql of examples that reach a level l of the cascade.
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