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Abstract. We redefine the problem of feature selection as one of model selection
and propose to use a Markov Chain Monte Carlo method to sample models. The
applicability of our method is related to Bayesian network classifiers. Simulation
experiments indicate that our novel proposal distribution results in an ignorant
proposal prior. Finally, it is shown how the sampling can be controlled by a reg-
ularization prior.

1 Introduction

The problem of feature selection has been targeted regularly in publications appear-
ing in the literature on datamining and statistical pattern recognition. Important key
references include [1–4]. Whether one wants to learn a statistical classifier from data, a
graphical model or perform clustering in high-dimensional space, confining the number
of feature variables included in the model by either feature selection or feature transfor-
mation, is often necessary. Inclusion of too many feature variables leads to over-fitting.
Within the context of feature selection, over-fitting causes the so-called peaking phe-
nomenon to occur [5]. Peaking refers to the fact that the performance of a statistical
model (e.g., the error rate of a classifier) on an independent test dataset generally peaks
when utilizing only a subset of the available feature variables. This is counterintuitive,
as adding extra non-informative feature variables to a statistical model should not, intu-
itively, lead to a performance decrease. However, as the model parameters are estimated
from a training dataset of a finite size, variance associated with the parameter estimates
leads to fitting random variations of the non-informative features and hence to a de-
crease in performance.

The problem of feature selection is more complex than often stated in the litera-
ture, because the use of different feature subsets inevitably imposes different models
(e.g., a different topology of a neural network [6]). Hence, feature selection implies
model selection. Model selection is a complex problem that, even in the simple case
where models are compared with one assessment criterion (e.g., the likelihood of the
model, its classification error rate or its residual variance), entails a trade-off between
bias and variance. On the one hand, allowing the inclusion of a large number of fea-
tures/parameters, may lead to an accurate model. However, the parameters will because
of their large variance result in a model performance that is prone to noise. On the other
hand, limiting the number of parameters is more likely to bias model performance, but
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it results in less variance. In this paper, we suggest to sample different models from a
statistical distribution in order to make such trade-offs explicit. So instead of looking
for “that one particular model with the best performance”, we propose to sample the
posterior distribution of models using a Markov Chain Monte Carlo method [7, 8].

2 Background

Feature selection has been approached within statistical pattern recognition at an early
stage. In 1971, it was conjectured that the peak in performance (1 – error rate) of statis-
tical classifiers solely occurred when the features were dependent [9]. Later, Trunk [10]
managed to prove that even for nall independent normally distributed feature variables,
peaking can occur when nall → ∞. It is furthermore clear that increasing the size m of
the training dataset solely shifts the position of the peak, allowing the model to utilize an
increasing number of feature variables. Also within multivariate statistics, approaches
for variable selection for linear regression [11], linear and quadratic discriminant anal-
ysis [12] have been developed.

Algorithms for feature selection rely on a search scheme and an assessment crite-
rion Js(X, n) for comparing feature subsets. Within the pattern recognition literature,
much research focused on search schemes [4, 13] and assessment criteria Js [6]. Solely
exhaustive search is guaranteed to result in an optimal feature subset with the maximal
score Js(X, n) on a test set, when the assumption of monotony of Js(X, n) with respect
to an increase in n does not hold [5].

Conclusively, three interrelated obstacles impede efficient feature selection: the
peaking phenomenon, the combinatorial complexity of exhaustive search resulting in
2nall − 1 nonempty feature subsets and the fact that feature selection entails model
selection.

3 A Formalism for Model and Feature Selection

We formalize the joint problem of feature and model selection. In the sequel, individual
stochastic variables are denoted with capital letters A, B, . . ., sets of stochastic variables
with bold capital letters, X , Y , Z. Outcomes of the variables are denoted with small
letters, e.g., P (A = a). Correspondingly, P (X = x) denotes the probability that the
variables X have the outcomes x. In general, we use X to denote the set of feature
variables and C the outcome variable. The statistical model M consists of a structural
part represented by the graph G and a set of parameters θ, M = (G, θ). The model is
used to implicitly estimate the class-conditional probability distribution P (X | C, M),
when the variables X are discrete and the density p(X | C, M) when the variables
X are continuous. For simplicity, we henceforward solely address the situation where
C is discrete. With D, we denote a training database with m training instances, D =
(d1, . . . , dm). Each instance d is represented by the discrete feature vector x and class
label c, yielding d = (x, c)T .

The search for the best feature subset can be illustrated with the lattice graph intro-
duced in [14]. Let GU = (V , E) be an undirected graph with V indicating the vertices
and E the edges connecting pairs of vertices: Eijk = 1 if the vertices Vi and Vj are
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connected (indicating feature subsets with a Hamming distance of 1), with k the model
index, whereas Eijk = 0 when Vi and Vj are not connected in model k. Figlure 1 shows
an example of a nested lattice structure that represents both feature subsets and models.
It is clear that model selection can be performed separately, for a given feature subset,
but that feature selection necessitates model selection.
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Fig. 1. (a) Lattice structure connecting the feature subsets with a feature set Hamming distance of
1. (b) A close-up of the model subspace associated with feature subset ‘101’ reveals that several
alternative models (M1 − M6) may be applied to the feature subset 101. The edges indicate
models with a model Hamming distance of 1. The model subspace associated with the empty
set 000 below (not shown) contains solely one model, namely the distribution of the predicted
variable C in the training set.

The nested lattice structure depicted in figure 1, with an upper layer representing
the feature subsets and a lower layer representing the possible models that utilize the
associated feature subset, is unnecessary complex to work with. Instead, we redefine the
feature selection problem as one of model selection. Consequently, we propose consid-
ering the score Js as a random variable and set as goal to sample the joint distribution

p(Js, Y , M̂ |D), Y ∈ P(X), M ∈ M (1)

where the score Js is a continuous stochastic variable. The generic score function Js

may indicate, for example, the likelihood s = L, the Bhattacharyya distance s = µ, the
error rate s = ε, or another measure depending on how the model M should be scored
for the particular application at hand. The hat-notation indicates that the parameters θ of
the model M have been estimated from the training set, but they may also be integrated
out, see e.g. [15]. P(X) denotes the power set of X and M the set of valid models that
can be learned from it.

4 Markov Chain Monte Carlo Sampling

We will use the Metropolis-Hastings algorithm [16] to perform Markov Chain Monte
Carlo sampling from a target probability function Π . More specifically, we propose to
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sample the distribution P (J, Y , M̂ |D). The Metropolis-Hastings algorithm results in a
discrete Markov Chain over a state space, S. The transition probabilities, Pq(Sk → Sl),
Sk, Sl ∈ S specify the probability of making a jump from state Sk (associated with
model k) to state Sl.

4.1 Probabilistic Network Classifiers

Markov Chain Monte Carlo techniques can be used to sample the posterior distribution
of different types of classifiers. Here, we illustrate MCMC by probabilistic network
classifiers [17, 18]. A probabilistic network classifier matches the general description
of a statistical model given in Section 3, see Fig. 2.
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E A B
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Fig. 2. (a) Directed acyclic graph specifying the direct dependencies in a Bayesian network clas-
sifier with 4 feature variables. The chain rule (Eq. (2)) specifies how the joint probability factor-
izes: P (A,B, C, D, E) = P (A)P (B|A)P (C|A,B)P (D|C, E)P (E). The variables A and B
are independent from D and E, given the class label C. (b) Naive Bayesian classifier where the
feature variables are independent, given the class label C. The joint probability factorizes into:
P (A,B, C, D, E) = P (A|C)P (B|C)P (C)(D|C)P (E|C).

A probabilistic network classifier M = (G, θ) consists of a structural model specifi-
cation, the directed graph G, and the parameters, θ, with the (un)conditional probability
θi,j,π(i) = P (Di = dj | π(Di) = dπ(Di)). The notation π(Di) = dπ(Di) indicates the
values of the parents of node Di in the graph G (the parents constitute the nodes with
arcs pointing directly to node Di). Computation of the posterior probability distribution
P (C = c|X = x) is specified by the directed graph. It follows from the chain rule that
the joint probability P (d) = P (c, x) is computed from

P (d) =
n+1∏

i=1

P (Di = d | π(Di) = dπ(Di)) (2)

(see Fig. 2). A little manipulation of Bayes formula yields the posterior probability
associated with class label cj (where we omit denoting the variables)

P (cj |x) =
P (cj , x)∑
k P (ck, x)

(3)
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4.2 Approach by Madigan & York

Madigan & York have earlier presented an approach for sampling graphical models,
based on the Markov Chain Monte Carlo scheme [8]. In their approach, the goal is
to sample graphical models G ∈ G from the posterior distribution, P (G | D). The
likelihood L(G | D) ∝ P (D | G) with P (D | G) the probability that a particular
structural model G results in the dataset D.

Madigan & York define a homogeneous, stationary and reversible Markov chain.
This chain specifies the transition probabilities, Pq(G → G′), that a jump is made from
the model G to the model G′. The possible jumps from G to G′ consist of all acyclic
graphs that can be constructed by adding one arc to G or by deleting one arc from G.
Hence, G′ ∈ NB(G), the neighborhood of G defined by

NB(G) =

{ ⋃
i ∈ I(D),

⋃
j ∈ (I(D)\i | (Xi→Xj) �∈ G) AddAC(G, (Xi → Xj))

⋃
⋃

i ∈ I(G),
⋃

j ∈ (I(G)\i | (Xi→Xj) ∈ G) Del(G, (Xi → Xj))

}

(4)
with I(D) denoting the indices of the nodes representing all n + 1 variables, and
AddAC a function that adds an arc to G iff the resulting graph G′ is acyclic. To-
gether, the requirements of homogeneity and reversibility and the fact that the Markov
Chain is stationary, make it feasible to use the transition kernel (proposal distribu-
tion) q(G → G′) in the Metropolis-Hastings algorithm [8]. The proposal probabil-
ity Pq(G → G′) = |NB(G)|−1, whereas the probability of the reverse proposal is
Pq(G′ → G) = |NB(G′)|−1. The transition probability P (G′|G) is modelled as
P (G′|G) = Pq(G → G′)α(G, G′), G �= G′. The detailed balance, which ensures
reversibility, is obtained by using the normalization factor α(G, G′)

α(G, G′) = min
[
1 ,

P (D|G′)P (G′)
P (D|G)P (G)

Pq(G′ → G)
Pq(G → G′)

]
(5)

Sampling from the proposal distribution q(G → G′) and normalising by α(G, G′)
result in a posterior distribution P (G|D) where more likely models appear more often
than unlikely ones.

4.3 Naive Bayes classifiers

A special type of probabilistic network classifiers are the naive Bayesian classifiers, see
Fig. 2 (b). MCMC can be modified to sample naive Bayesian classifiers. Because no
model selection takes place in this simple case, each node in the lattice graph (Fig. 1
(a)) contains solely one model. Instead of using the likelihood P (D|G) as assessment
criterion, we suggest to use the general criterion Js, which may be the likelihood, 1–
error rate, or another metric that measures discriminative performance. We define the
add-one-delete-one neighborhood to include only Naive Bayes classifiers

NBI(G) =






⋃
i ∈ I(X) | (C→Xi) �∈ G Add(G, (C → Xi))

⋃

⋃
i ∈ I(G) \ C Del(G, (C → Xi))




 (6)
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Following the approach by Madigan & York, it would be natural to set the proposal
probability to Pq(G → G′) = |NBI(G)|−1. However, such a choice leads nonuni-
form proposal distribution P (N) with respect to the size of the feature subsets that are
compared. The following theorem formalizes this

Theorem 1 A Markov Chain Monte Carlo scheme for proposing feature subsets, where
each subset in the add-one-delete-one neighborhood NBI has the same probability of
being proposed, Pq(G → G′) = |NBI(G)|−1, this results in a proposal probabil-
ity imposing a nonuniform prior P (N) that is maximal for N = n, n ∈ {nall/2 −
1, nall/2, nall/2 + 1}, depending on whether nall is even or odd.

Proof (sketch)
It follows from the Binomial theorem that the number of size n ∈ {1, . . . , nall} feature
subsets of nall, is

(
nall

n

)
. As

(
nall

n+1

) ≥ (
nall

n

)
, n < nall/2 because |I(X), (C → Xi) �∈

G| ≥ |I(G) \ C| whereas
(

nall

n+1

) ≤ (
nall

n

)
, n > nall/2 because |I(X), (C → Xi) �∈

G| ≤ |I(G) \ C|, it follows that the prior P (N) is maximal for feature subsets with a
size nall/2.

We will instead use a proposal distribution, that results in each size n having the
same (uniform) probability. Establish the partitioning of NBI(G) into two disjoint sub-
sets, NBI(G) = {NBIG(+1), NBIG(−1)}, where NBIG(+1)(G) is the subset of graphical
models in NBI(G) that results from adding one arc to G, and NBIG(−1)(G) is the sub-
set of graphical models in NBI(G) that results from deleting one arc from G. We now
suggest a two-step proposal distribution q: Draw a uniformly distributed number u ∼
U(0, 1). If u ≥ 1

2 then choose a model in NBIG(+1) with the probability |NBIG(+1)|−1,
otherwise choose a model in NBIG(−1) with the probability |NBIG(−1)|−1. The normal-
ization factor that ensures detailed balance, becomes

α(G, G′) = min
[
1 ,

P (J |G′)P (G′)
P (J |G)P (G)

Pq(G′ → G)
Pq(G → G′)

]
(7)

with the proposal probability Pq(G → G′) = 1 and

Pq(G′ → G) =






1
2 : n(G) = 0
1
2 : n(G) = nmax

1 : otherwise
(8)

where n(G) indicates the number of features included in model G. Pq restores detailed
balance with respect to the number of features in relation to the two end points, 0 and
nmax, of the proposal interval. The parameter nmax ≤ nall such that the maximal size
of a feature subset can be limited. The resulting posterior distribution implies a non-
informative (uniform) prior, P (N), on size N = n of any feature subset. We conduct a
simulation experiment to illustrate the practical implication of Theorem 1.

4.4 General Bayesian Network Classifiers

We now extend our MCMC approach to sample general Bayesian network classifiers.
Hence, the lattice graph (Fig. 1 (a)) represents both different feature subsets and mod-
els. Define the one-step look ahead neighborhood of the graph G consisting of the di-
rected acyclic graphs resulting in valid probabilistic classifiers that can be constructed
by adding one arc to G or deleting one arc from G
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Fig. 3. (Upper left) Shows the posterior distribution of J for MCMC scheme 1. (Lower left)
Shows the distribution of feature subsets for MCMC scheme 1. (Upper right) Shows the posterior
distribution of J for MCMC scheme 2. (Lower right) Shows the distribution of feature subsets
for MCMC scheme 2.

NBC(G) =






⋃
i ∈ I(X), C �∈ σ(Xi), C �∈ π(Xi)

Add(G, (Xi → C))
⋃

⋃
i ∈ I(X), C �∈ σ(Xi), C �∈ π(Xi)

Add(G, (C → Xi))
⋃

⋃
j ∈ I(σ(C))

⋃
i ∈ I(X) \ π(Xj)

Add(G, (Xi → Xj))
⋃

⋃
i ∈ I(G)

⋃
j ∈ I(G) | (Xi→Xj) ∈ G Del(G, (Xi → Xj))





(9)

with π(Xi) the children of node Xi and σ(Xi) the parents of node Xi. The function
I(σ(C)) denotes the indices of the children of the classification node C. The neighbor-
hood NBC(G) is subdivided into four disjoint subsets

NBC(G) = {NBC(G + 1F ), NBC(G − 1F ), NBC(G + 1M ), NBC(G − 1M )} (10)

The subset NBC(G + 1F ) contains the graphical models in NBC(G) where the addi-
tion of an arc implies that G′ contains one feature variable more than G. The subset
NBC(G − 1F ) contains the models in NBC(G) where the deletion of an arc implies
that G′ contains one feature variable less than G. The subset NBC(G + 1M ) contains
the models in NBC(G) where the addition of an arc increases the complexity of G′, but
where G and G′ include the same feature variables. NBC(G−1M ) contains the models
in NBC(G) where the deletion of an arc decreases the complexity of G′, but where G
and G′ include the same feature variables.

We define the proposal distribution qC as follows:

qC(G → G′) =






u < 1
4 q1(|NBC(G + 1F )|−1)

1
4 ≤ u < 1

2 q2(|NBC(G − 1F )|−1)
1
2 ≤ u < 3

4 q3(|NBC(G + 1M )|−1)
3
4 ≤ u q4(|NBC(G − 1M )|−1)

(11)
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Fig. 4. (a) Shows the posterior distribution of J when using a Poisson prior, P (G). The left tail
contains models with the maximal performance 0.9. (b) Shows the distribution of feature subsets
when the same prior is used.

with u ∼ U(0, 1). So in each proposal, the MCMC-algorithm with the same probability
chooses to add a feature, delete a feature, increase the model complexity or simplify the
model (the two latter moves keep the same feature subset).

5 Simulation Experiments

We performed a simulation experiment in order to compare the two sampling schemes
proposed for the Naive Bayesian classifier in Section 4.3. We set the scoring metric
J(X) = 1 − ε(X) and chose to simulate with a feature set of 10 features. Five of the
(independent) features could each lead to an increase in J(X) of 0.08, yielding a max-
imum of 0.9. The performance resulting from the empty feature set is 0.5. We sampled
100.000 feature subsets (naive Bayes classifiers) using the scheme based on the Madi-
gan & York approach (scheme 1), and 100.000 using our novel proposal distribution
(scheme 2).

Our second proposal distribution based on the neighborhood NBI behaves as could
be expected and support Theorem 1. The more features a subset contains, the higher the
resulting score J will be. To cope with the curse of dimensionality, we experimented
with using the discrete Posson distribution as prior, P (N). Setting λ = 4, we obtained
the results as shown in Fig. 4.

In our third experiment, we implemented the proposal distribution for general
Bayesian network classifiers, Eq. (11). We sampled 100 training cases from the prob-
ability distribution specified by the graph in Fig. 2. MCMC was set to run for 1000
iterations. The simulation resulted in 757 nonempty feature sets. The most frequent
nonempty feature set included all 5 features, and was found 166 times. The second
most likely feature set consisting only of feature 1, was sampled 63 times. So the cor-
rect feature set was also most frequently sampled in the markov chain.

6 Discussion

We have presented a method for sampling statistical models in general, and pattern
classifiers in particular, using an ignorant proposal distribution. It was shown how a
regularization prior can be used to restrain the maximal dimensionality of the sampled
models. Finally, we showed how general Bayesian classifiers can be sampled using the
novel proposal distribution.
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