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Abstract. Recently a number of successful algorithms to select/extract dis-
criminative spectral regions was introduced. These methods may be more bene-
ficial than the standard feature selection/extraction methods for spectral classi-
fication. In this paper, on the example of autofluorescence spectra measured in 
the oral cavity, we intend to get deeper understanding what might be the best 
way to select informative spectral regions and what factors may influence the 
success of this approach. 

1    Introduction 

In medical applications, one often faces the small sample size problem: the number of 
measurements is smaller than or comparable with the data dimensionality. In such 
conditions, it is difficult (or even impossible) to construct a good classification rule 
[1]. One has to reduce the data dimensionality. When having spectral data, using 
standard feature selection/extraction methods may be inconvenient. The standard 
approaches assume the independency of data features while in spectra the features 
(neighbouring wavelengths/pixels/bins) are correlated. Therefore, some useful infor-
mation may be lost if the connectivity of spectral neighbouring pixels is not taken into 
account when extracting/selecting features informative for discrimination between 
data classes. During the last few years, a number of novel methods for selection/ ex-
traction informative spectral regions/bands has been developed. One example of such 
feature extraction algorithms is an Optimal Region Selector (ORS) [2] guided by a 
genetic algorithm. Another example is a top-down multiresolution feature extraction 
algorithm proposed by Kumar, Ghosh and Crawford [7]. 

In this paper we pretend neither to introduce fundamentally new algorithms for se-
lection/extraction of informative spectral regions, nor to perform an extensive com-
parison of already existing algorithms with a standard feature selection/extraction 
methods. Our goal is to understand what happens exactly when extracting informative 
spectral regions by different methods, what underlines the success of this process and 
what factors influence the benefit of this approach. 
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In order to perform our study we have selected a real data set, which represents 
autofluorescence spectra measured in the oral cavity. This data set introduces a 2-
class problem: lesions against healthy tissues. It is described in section 2. Different 
feature selection/extraction techniques used for finding informative spectral re-
gions/bands are introduced in section 3. The results of our simulation study are pre-
sented in section 4. Conclusions can be found in section 5.  

2    Data 

We perform our study on the example of autofluorescence spectra measured in the 
oral cavity. The data consist of the autofluorescence spectra acquired from healthy 
and diseased mucosa in the oral cavity. The measurements were performed at the 
Department of Oral and Maxillofacial Surgery of the University Hospital of Gronin-
gen [3]. Autofluorescence spectra were collected from 97 volunteers with no clini-
cally observable lesions of the oral mucosa and 137 patients having lesions in the oral 
cavity. The measurements were taken at 11 different anatomical locations with excita-
tion wavelength equal to 365 nm. The previously performed study [3] has shown that 
spectra measured at different anatomical locations are similar, and the location of a 
probe affects only the intensity of the spectra but not the shape. By this, it was possi-
ble to use a larger data set for our study. In total, 856 spectra representing healthy 
tissue and 132 spectra representing diseased tissue were obtained. After preprocessing 
[3], each spectrum consists of 199 bins (pixels/wavelengths).  

In order to get rid of a large deviation in a spectral intensity within each data class, 
we normalized spectra by the Unit Area (UA) 

 (1) 

where ai is an intensity of a spectrum A={a1, ...., a199} at bin i, i=1,...,199. Normalized 
autofluorescence spectra representing healthy and diseased tissues and their median 
spectra are illustrated in Fig. 1.  
 

 

Fig. 1. Normalized autofluorescence spectra for healthy and diseased mucosa in oral cavity. 

For our simulation study, training data sets with 2/3 of available samples per class 
are chosen randomly from the total set. The remaining data are used for testing. The 
prior class probabilities are set to be equal as the data are very unbalanced and the real 
prior class probabilities are unknown. To evaluate the performance of lesion diagnos-
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tics when different feature selection/extraction methods are used, we have chosen the 
Linear Discriminant Analysis (LDA) [4] which was the best performing classifier for 
this application. In particular, we apply the regularized linear classifier [5] which 
constructs a linear discriminant function assuming normal class distributions and 
using a joint class covariance matrix for both data classes. The value of the regulariza-
tion parameter used is equal to 10-10. All experiments are repeated 20 times on inde-
pendent training sample sets. In all figures the averaged results over 20 trials are pre-
sented and we do not mention that anymore. The standard deviations of the reported 
mean generalization errors (the mean per two data classes) is approximately 0.01 for 
each considered case. 

3    Selection/Extraction of Spectral Regions 

Inspired by the success of approaches suggested by Nikulin [2] and Kumar [7], we 
became interested in what actually happens when selecting/extracting spectral re-
gions, why and when it is beneficial and not.  

The first approach, Optimal Region Selector by Nikulin [2], is based on a genetic 
algorithm. First, one randomly generates few sets of non-overlapping spectral regions 
of arbitrary size. For each region, a new feature (for instance, the mean of the spectral 
intensities in the region) is derived. Then the goodness of each set of new features is 
evaluated by some criterion (Nikulin has used the mean square error between the true 
labels and the posterior class probabilities calculated on the training dataset by the 
linear classifier having the averaged coefficients over all linear classifiers constructed 
on leave-one-out cross-validation). According to this criterion, the best subsets of 
spectral regions are selected. Further, one again increases the number of these subsets 
by random mutations and crossovers of the region definitions, and the procedure re-
peats. At the end, a suboptimal solution (due to a randomness of the whole procedure) 
for the best set of spectral regions is found. 

The second approach, a top-down multiresolution feature extraction algorithm pro-
posed by Kumar et al. [7], partitions the original p-dimensional spectra into smaller 
subspaces by using a top-down recursive algorithm. First, the best place to split spec-
tra into two parts is found by computing a discriminant measure between data classes 
(for instance, Bhattacharya distance, Kullback-Leibler divergence or log-odds of class 
posterior probabilities used by Kumar can be applied). The discriminant measure 
obtained on the parent space is compared with the discriminant measures calculated 
on the children subspaces. If the child subspace has a higher discrimination than the 
parent space, then it is partitioned further. If the child subspace does not show any 
improvement in its discrimination capacity compared to the parent space, then this 
child subspace is not partitioned any further. Finally, one finds a set of spectral re-
gions/ bands with high discrimination. However, the optimization is performed only 
in a one-dimensional way: a discrimination capacity is evaluated for each spectral 
region separately but not for a total set of selected spectral regions.  

We consider here the Top-Down variant of Generalized Local Discriminant Bases 
algorithm (GLDB-TD), which is conceptually close to the algorithms, described in 
this paper. The GLDB-TD algorithm represents each group of wavelengths by a mean 
of corresponding intensities. 

In our study on the usefulness of spectral regions extraction/selection approach and 
on the benefits of different ways to extract/select discriminative spectral regions, we 
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do not use exactly the two algorithms discussed above. First, we would like to sim-
plify the procedures for selection/extraction of discriminative spectral regions in order 
to get more insight what does actually happen. Second, it is convenient to use the 
same discriminant measure between data classes when comparing different ways of 
selecting/extracting the best spectral bands. And finally, we prefer to use multi-
dimensional optimization when looking for the informative spectral regions.  

In our study we consider few approaches to extract/select the informative/dis-
criminative spectral regions. In all of them, first we perform the dimensionality reduc-
tion for each considered spectral band. Namely, from each spectral region considered 
we derive one new feature by taking the average of intensities in this region. This new 
feature (the averaged intensity of the spectral band) is used further to introduce the 
spectral region.  

In order to evaluate a discriminative capacity of extracted spectral regions, we use 
the Mahalanobis Distance (MD) between data classes: 

 (2) 

where µA, µB and ΣA, ΣB are the means and the covariance matrices of data classes A 

and B, respectively; p is the prior probability of the data class A. The larger Maha-
lanobis distance, the larger discriminative capacity between data classes. In order to 
perform the multi-dimensional optimization of S spectral regions, we calculate the 
Mahalanobis distance on the whole set of S features (the averaged intensities of spec-
tral bands), each representing one of S spectral regions. By this, we find the optimal 
set of spectral regions providing the best discrimination (according to MD) between 
data classes. 

In our study we consider the following ways to extract/select the informative 
spectral regions. 

Approach 1.  

A. Sequential Partition of Spectra into Non-overlapping Bands Using All Spectral 
Pixels. 

First, we split spectra into two spectral regions by finding the best split which gives 
the largest MD (over all possible partitions) in the space of two features extracted 
from the two spectral bands. Then, the first found split is fixed and we look for the 
next optimal split in such a way that the MD in a three-dimensional space (on three 
features extracted from the three spectral bands) is the largest over all possible loca-
tions for the second split (when the location of the first split is anchored). Again, we 
fix the location for the first two found splits and repeat the procedure while the de-
sired number of spectral regions S is found (see top plots in Fig. 2). In this approach, 
all spectral emission wavelengths are used in the partitioning of spectra. However, 
some spectral bins can be uninformative - introducing only noise. Hence, they may 
deteriorate the classification when they are included in the extracted spectral regions. 
Therefore, it is good to remove them from the spectral bands. One way to do this is 
described below. 

B. Sequential Partition of Spectra into Non-overlapping Bands Excluding Uninforma-
tive Spectral Pixels. 

After a desired number of spectral regions S is found by Approach 1A, we can shrink 
the spectral bands removing uninformative emission wavelengths. We reduce the 
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number of bins in each spectral region in a sequential way moving from the most left 
spectral region to the most right one. For shrinking the spectral band, we consider all 
possible subregions of the reduced size in this band and find the one with the largest 
MD in S-dimensional space (one feature, the averaged intensity, calculated from a 
shrunk subregion of the spectral band under consideration and the rest S-1 features 
extracted from the other S-1 spectral bands which definitions are fixed for a moment). 
After the optimal shrinking for the first spectral band is found, we anchor its new 
definition and move to the next spectral band in order to exclude uninformative pixels 
(see middle plots in Fig. 2). We should mention that the proposed method is highly 
dependent on the spectral regions proceeding order and therefore it does not guaranty 
the optimal shrinking for all regions in general.  

Approach 2. 

A. Sequential Selection/Extraction of Discriminative Spectral Regions.  

In order to find a set of the most discriminative spectral bands, at each step s,                    
s = 1, 2, … S, we consider all possible definitions of spectral regions (of arbitrary 
size) in spectra. For each of them we calculate the MD criterion in s dimensions: one 

 

Fig. 2.  Approach 1A (top plots), Approach 1B (middle plots) and Approach 2A (bottom plots) 
for selection/extraction of informative spectral regions (SR) to discriminate between healthy 
and diseased tissues.  
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feature is the averaged intensity of a current potential pretender for the most informa-
tive band and other s-1 features are extracted from the previously found optimal spec-
tral regions. The spectral band (a potential pretender) with the largest MD is picked as 
the most discriminative spectral band (in combination with the s-1 previously found 
optimal regions). Let us mention that in this approach overlapping as well as non-
overlapping spectral bands are possible (see bottom plots in Fig. 2). 

B. Sequential Selection/Extraction of Non-overlapping Discriminative Spectral Re-
gions.  

This approach is identical to Approach 2A with the exception that overlapping spec-
tral bands are not allowed: when looking for an additional discriminative spectral 
region, the regions overlapping with the previously selected optimal spectral bands 
are excluded from consideration.  

4    Simulation Study 

Let us now study the benefits of extracting/selecting the discriminative spectral re-
gions. In order to judge the success of this approach, we compare different ways to 
extract/select spectral regions with one of the most successful standard feature extrac-
tion methods - the Principal Component Analysis (PCA) [4]. In Fig. 3, we present the 
mean generalization errors of the LDA (top plots) (over 20 independent trials) and the 
mean Mahalanobis distances (bottom plots) obtained on the autofluorescence spectral 

 

Fig. 3. The mean generalization error (GE) of LDA (a-c) and the mean Mahalanobis distance 
(MD) (d-f) when the MD criterion is used in Approaches 1 (a,d) and 2 (b,e) to select/extract
discriminative spectral bands for autofluorescence spectral data. In plots (c,f) the comparison is
made between Approaches 1A and 2A. The standard deviation of the mean GE is around 0.01.
GLDB-TD denotes the performance of a Top-Down variant of the Generalized Local Discrimi-
nant Bases using a Mahalanobis distance criterion. 
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data when feature extraction is performed by the PCA and Approaches 1A, 1B, 2A 
and 2B for discriminative spectral bands extraction. We see that almost all introduced 
approaches for selection/extraction of informative spectral regions outperform the 
PCA. The exceptions are the cases when the whole spectrum is taken as one spectral 
band (the averaged intensity over the whole spectrum is not very informative) or too 
many spectral regions (some of them contain only noise) are picked to discriminate 
between data classes. 

In order to evaluate our approach we compare different feature extraction tech-
niques, proposed by us, to two existing methods. The first is a Principal Component 
Analysis (PCA). The second is a Top-Down Generalized Local Discriminant Bases 
algorithm (GLDB-TD) of Kumar et al. [7]. 

Similarly to the proposed feature extraction techniques, the GLDB-TD algorithm 
uses the Mahalanobis distance as a criterion. 

Because the GLDB-TD algorithm terminates automatically using a data-driven cri-
terion, only a single point is given in each plot. The point represents the mean error of 
20-fold cross-validation. Because each fold results, in general, in a different number 
of wavelength groups, we plot a median over these 20 results. 

Comparing the performance of the linear classifier for Approaches 1A and 1B, we 
notice that shrinking the spectral regions in the optimal partition of spectra is not 
useful (see Fig. 3a). One reason underlies in the proposed method 1B that is not opti-
mal in general. Another reason is that the MD criterion is not equivalent to the LDA: 
the covariance matrices of data classes are assumed to be different in the MD criterion 
while they are considered to be the same for both data classes in the LDA. Therefore, 
optimizing the MD in selection/extraction of the most discriminative spectral regions 
does not guaranty the optimal performance for the linear classifier. For instance, for 
20 spectral features extracted, Approach 1A provides the largest MD (see Fig.3d) but 
worse performance of the LDA than for the PCA (see Fig. 3a).  

For our autofluorescence spectral data, we do not observe any difference between 
Approaches 2A and 2B: it is not important whether the extracted spectral regions do 
overlap or do not (see Fig. 3b). However, we see that Approach 2A is more beneficial 
than Approach 1A: using less spectral wavelengths in selected spectral bands is better 
than when all spectral wavelengths are used in the partitioning of spectra (see Fig. 
3c). In addition, we should mention that often both Approaches 1B and 2B tend to 
select/ extract very narrow spectral bands consisting only of 1-3 pixels/wavelengths 
which may introduce more noise fluctuations than a real difference between data 
classes. This may happen due to the overtraining that occurs when the same training 
set is used to construct the LDA and to optimize the MD criterion in the spectral re-
gions extraction. 

In order to avoid the shortages of the MD criterion mentioned above and the over-
training when extracting discriminative spectral regions, other criterion should be 
used. The alternative may be the apparent error (AE) (the classification error on the 
training set) of the linear classifier. This criterion is more close to the LDA than the 
MD criterion what concerns assumptions on the data classes distributions. The elusion 
of overtraining can be done by bootstrapping [6] the training set when calculating the 
apparent error. Namely, we bootstrap the training set B times constructing a linear 
classifier on each bootstrap replicate of the training set and calculate the average clas-
sification error of these B bootstrapped classifiers on the original training set. 

Let us now consider the differences in the performance of the LDA caused by ap-
plying the AE criterion instead of the MD to extract informative spectral bands. In our 
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simulations we use B=5 bootstrap replicates of the training set to calculate the appar-
ent error. Figures 4 and 5 illustrate that using the AE criterion is indeed more benefi-
cial than using the MD criterion: the performance of all four Approaches (1A, 1B, 2A 
and 2B) is improved. In figure 4 also the AE result for the GLDB is shown. In Ap-
proaches 1B and 2B, wider spectral bands on average are found to be optimal when 
the AE criterion is applied instead of the MD criterion for extracting discriminative 
spectral regions. Also, the previously made observations hold on: using a subset of 
spectral wavelengths in extracted spectral bands is more preferable than using them 
all in the optimal partition of spectra; it seems to be unnecessary to extract uncorre-
lated spectral bands in order to achieve the best classification results.  

 

 

Fig. 5. The performance of LDA calculated on principal components (PCA) and on spectral 
regions selected/extracted by using the Mahalanobis Distance (MD) and the Apparent Error 
(AE) criteria for autofluorescence spectra. 

5   Conclusions 

Summarizing simulation results presented in the previous section, we can conclude 
the following. The selection/extraction of discriminative spectral bands may be more 
beneficial than the standard unsupervised feature selection/extraction methods (e.g., 

 

Fig. 4. The mean generalization error (GE) of LDA when the discriminative spectral regions 
for autofluorescence spectra are extracted/selected by using the apparent error (AE) criterion in 
Approach 1 (plot a) and Approach 2 (plot b). In plot (c) the comparison is made between Ap-
proaches 1A and 2A. The standard deviation of the mean GE is around 0.01. GLDB-TD de-
notes the performance of a Top-Down variant of the Generalized Local Discriminant Bases 
using an apparent error criterion. 
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PCA) that do not assume the connectivity of the neighbouring wavelengths in spectral 
data.  

In order to gain more advantage from the selection/extraction of informative spec-
tral regions, the optimization criterion to select/extract discriminative spectral bands 
should be adjusted to the classification rule used to solve the problem. When selecting 
informative spectral regions, overtraining may be avoided if the evaluation criterion 
measures a performance on a different than the training dataset. For this purpose, the 
bootstrapped training set or an additional validation dataset can be used. 

It follows from our experiments that it is advantageous to perform a multi-variate 
selection of wavelength groups, compared to a uni-variate approach such as General-
ized Local Discriminant Bases (GLDB) utilizing the same criterion. It is also useful to 
exclude uninformative wavelengths from the spectral regions. 

Interestingly, we have found out that extracted informative spectral bands do not 
need to be uncorrelated. Classifiers such as a linear discriminant assuming normal 
densities will find a good separation boundary even for correlated features. Feature 
extraction techniques like GLDB identify groups of non-overlapping wavelengths. 
Our finding suggests that overlapping groups of wavelengths may provide discrimina-
tive representation as well. 
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