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Abstract. This paper describes a graph-spectral method for path es-
timation. Our aim is to find a maximum probability path through a
lattice of pixel sites. We characterise the path recovery problem using
a site transition matrix. A graph-spectral analysis of the transition ma-
trix reveals how the maximum probability path can be located using an
eigenvector of the associated normalised affinity matrix. We demonstrate
the utility of the resulting method on the problem of recovering surface
height from a field of surface normals.

1 Introduction

The recovery of maximum probability paths through a pixel lattice is one that
arises throughout computer vision. This problem involves computing transition
probabilities or costs associated with sites, and then searching for the maxi-
mum probability or minimum cost path. Of course, the underlying optimisation
problem has exponential complexity, and hence exhaustive search is not a valid
option. It is for this reason that optimisation methods such as dynamic program-
ming [1], simulated annealing [2] and bayesian techniques [3] have been used to
provide practical solutions to the problem. However, in this paper we aim to
take a different approach and adopt a graph-spectral approach to the problem.

The idea underpinning graph-spectral methods is to abstract the problem
in hand using a weighted graph. Here the nodes represent these basic image
entities, and the weighted edges represent affinity relations between the enti-
ties. By computing the eigenvalues and eigenvectors of the weight matrix, it
is possible to find groups or clusters of tokens. The graph-spectral method is
in fact one of energy minimisation since the eigenvectors can be shown to be
minimisers of a quadratic form. In fact, graph-spectral methods have recently
proved highly effective in image processing and computer vision. Perhaps the
best known method is that of Shi and Malik [4] which has shown how to lo-
cate image regions by recursively bisecting a weighted graph that represents the
affinity of pairs of pixels. The method is based on the normalised cut. This is
a measure of the relative weight of the edges connecting the two parts of the
partition (the cut) to the weight assigned to the edges within the two parts of
the bisection (the association). A relaxed solution to the bisection problem is
found by locating the eigenvector associated with the second smallest eigenvalue
of the Laplacian matrix (the degree matrix minus the affinity weight matrix).
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Although it is convenient to work with the Laplacian, since it is positive and
semi-definite, grouping and segmentation can also be performed using an edge-
weight or affinity matrix. For instance, both Sarkar and Boyer [5] and Perona
and Freeman [6] have developed matrix factorisation methods for line-segment
grouping that use eigenvectors of an affinity matrix rather than the associated
Laplacian. The Sarkar and Boyer [5] method can be understood as maximising
the association (i.e. the total edge weight) of the clusters.

The methods described above all share the feature of using the eigenvectors
of a Laplacian or an affinity matrix to define groups or clusters or objects.
However, graph-spectral methods can also be used for path analysis tasks on
graphs. For instance, it is well known that the path length distribution can be
computed from the spectrum of eigenvalues of the adjacency matrix [7]. Ideas
from spectral-graph theory have also been used to analyse the behaviour of
random walks on graphs [8-10]. The observation underpinning this work is that
random walks on a weighted graph can be represented as Markov chains in which
the transition probabilities are computed from the normalised edge weights. The
problem investigated is to compute the transition probability between pairs of
pixel sites after a large number of time steps have elapsed. This study has lead
to a number of interesting findings. Of direct relevance to this paper is the
fact that the steady state random walk on the graph is characterised by the
leading eigenvector of the normalised edge-weight matrix. In addition, there are
important relationships between the eigenvectors of the edge-weight matrix and
other quantities related to random walks. These include the access time for a
node (i.e. the expected number of time steps that must have elapsed before the
node is visited) and the mixing rate (i.e. the rate at which the random walk
converges to its steady state). The relationship between the leading eigenvector
of the edge weight matrix and the steady state random walk has been exploited
in a number areas including routeing theory and information retrieval [11,12].

The advantage of graph-spectral methods is that they can be used to find
approximate or relaxed solutions without the need for parallel iterative updates
at the pixel site level. The method also obviates the need for complex search
algorithms. However, although they have been applied to region segmentation
and grouping problems, graph-spectral methods have not been applied to curve
detection problems of the sort that arise in the determination of the optimal
integration path.

2 Graph Spectral Analysis

To cast the curve estimation problem in a graph-spectral setting we adopt an
abstraction where the sites to be traversed are represented by a node-set V', the
connectivity relations by an edge-set E and the edges have a weight function W :
E — [0, 1]. Here we aim to use the weight matrix W to define a Markov chain and
to use the steady state random walk associated to this chain to find a path across
the graph G = (V, E). The elements of the weight matrix are computed using the
energy or cost associated with the transitions between sites on the pixel lattice.



Steady State Random Walks for Path Estimation 145

Suppose that &; ; is the energy associated with the transitions between the sites
with node-labels ¢ and j, then the weight associated with the transition is W; ; =
exp[—0&; ;]. Unfortunately, when computed in this way, the weight matrix W
cannot be used directly as the transition probability matrix for the Markov
chain since its rows do not sum to unity. To normalise the rows of the matrix
we compute the degree of each node deg(i) = Z“ﬁl W (i, j). With the diagonal
degree matrix D = diag(deg(1),deg(2), .. deg(|V|)) at hand, the transition
probability matrix is given by P = D~'W. The elements of the transition matrix
are hence given by P; ; = me. It is interesting to note that the transition
matrix P is a row stochastic matrix. Moreover, it is related to the normalised
symmetric positive definite matrix W = D WDz = D%PD*%,and as a
result, we can write P = D—2WDz. It is worth noting in passing that the
matrix W is related to the normalised Laplacian L = D~2(D — W)D~2 =
[-D WD z:=1-W.

Our aim is to use the steady state random walk on the graph G as an estimate
of the maximum probability path across the graph G. The walk commences at
the pixel j; and proceeds via the sequence of pixel sites I' = {j1, jo, js, ...}. If
the random walk can be represented by a Markov chain with transition matrix
P, then the probability of visiting the pixel sites in the sequence above is

Pr = .]1 H PJZ+1JL H d7l+17J1

ler ler

Substituting for the path energy, we have that

exp {—ﬁ >ier 54
= [Licr deg(l) N Zr expl=¢r]

where &r = B3, & and Zp = [[,c deg(l). Hence, the integration path is a
Markov chain with energy function £ and partition function Zp. Further, let
Q+(i) be the probability of visiting the pixel site indexed i after t-steps of the
random walk and let Q; = (Q:(1),Q+(2),...)T be the vector whose components
are the probabilities of visiting the sites at time ¢. After ¢ time steps we have that
Qi = P'Qo. If Wt is the result of mult1ply1ng the symmetric positive definite
matrix W by itself ¢ times, then P* = D~ W'Dz, To develop a spectral method
for locating the steady state random walk, we turn to the spectral decomposition
of the normalised affinity matrix W=D :iWD % = Zi\il \id;dl where the
A; are the eigenvalues of W and the ¢; are the corresponding eigenvectors.
By constructing the matrix & = (¢1|da|....|¢px) with the eigenvectors of W
as columns and the matrix A = diag(A1, A2, ..., An) with the eigenvalues as
diagonal elements, we can write the spectral decomposmon in the more compact
form W = #APT. Since, the eigenvectors of W are orthonormal, i.e. $6T = T,
we have that Wt = @Atsl')T. Substituting the spectral expansion of the matrix
W into the expression for the state-vector of the random walk at time step ¢, we
find
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[V
Qi =D 29A'P"DEQy = {Z ND™2 i} D= }Qo
i=1
The leading eigenvalue of W is unity, i.e. A, = 1. Furthermore, from spectral-
graph theory [9], we know that, provided that the graph G is not a bipartite
graph, then the smallest eigenvalue \jy| is greater than —1. As a result, when
the Markov chain approaches its steady state, i.e. ¢ — oo, then all but the
first term in the above series become negligible. Hence, the steady state random
walk is given by Qs = lim; .o Q¢ = D%qb*qb:{D_%Qo, where ¢, is the leading
eigenvector of the normalised affinity matrix W . This establishes that the leading
eigenvector of the normalised affinity matrix W determines the steady state of
the random walk. It is also important to note that the equilibrium equation for
the Markov process is Qs = PQs, where @), is the vector of steady-state site
visitation probabilities. Hence, since the leading eigenvalue of P is unity, then
it follows that Qs is the leading eigenvector of P. For a more complete proof of
this result see the book by Varga [13] or the review of Lovasz [8].

We aim to visit the pixel sites on the lattice in the order of their steady-state
state probabilities. Suppose that the initial state vector for the sites is uniform,
ie. Qo= (ﬁ, \VI) As a result the steady-state probability of visiting the
pixel site 7 is

[V

L L deg(j)
Q:() = 17 ; deg(n O+ (D9-(0) =

V]

Z\/ R

|V| \/de

Since the summation appearing above is the same for all pixel sites, the proba-

bility rank order is determined by the quantity ¢, (i) = \/‘Z—(—lz)
eg(i

3 Curvature Dependant Weights

The application vehicle used in this paper is the identification of an integration
path that can be used to reconstruct a surface from a field of surface normals.
The surface integration problem arises in shape-from-shading and shape-from-
texture. Our aim is to reconstruct the height function for the surface S from a
planar field of surface normals, under the assumption that the image of the sur-
face is formed under orthographic projection. To realise this goal, we require an
integration path. This path must traverse or connect the sites of the pixel lattice.
By traversing the path, the relative surface height function can be reconstructed.
This is done using the trapezium rule to increment the height using the distance
travelled on the path and the known slant and tilt angles of the surface normals
at different locations on the image plane. In the work reported here the path
is one that optimises a graph-spectral criterion that penalises high curvature.
To this end, we require a means of gauging the affinity of pixels based on an
image plane approximation to the surface curvature. The path must minimise
the change in surface normal direction or sectional curvature across the field of
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surface normals. Suppose that IN; is the surface normal at the point indexed ¢ on
the pixel lattice. We note that if the path between the locations ¢ and j can be ap-
proximated by a circle of radius R on the surface, then the approximate sectional
curvature is |#; ;| = %, If the line connecting the pixel sites on the image plane
is of length s; ;, then the change in direction of the radius vector of the circle is

0;,; = arccos N ;- IN;, and as a result cosf; ; = IN;- N ;. If the angle 6; ; is small,
2

. . . 02
then we can make the Maclaurin approximation cosf;; ~ 1 — =2 = N; - N ;.

Moreover, the small angle approximation to the radius of curvature of the circle
Sq

s Ry = Sid
is R j = 5 and hence

5 _2(1-N,;-N;)
e (1)
7

To compute the elements of the transition probability matrix we associate to
the pair of pixels a cost or energy that is equal to the square of the product of
the distance between the sites and sectional curvature of the connecting path.
Hence, the transition weight matrix has elements

Wi,j = exp |:—6I%i_7112)7:| = exp |:—26(1 — Nl . NJ) (2)

With this definition of the weight matrix, we can also view the recovery of
the graph-spectral integration path as one of energy minimisation. The leading
eigenvector of the matrix W satisfies the condition ¢, = argmaxg quW(b =
arg maxg quD_% WD_%(b We can make the relationship to the raw field of sur-
face normals more explicit by introducing the matrix F' = (N1|Na|...|N|y|)
with the surface normals as columns. When the constant 3 is small, then mak-
ing use of the Maclaurin expansion of the exponential weighting function we can
write W = eel — p(ee’ — FTF) where e = (1,1, ....,1) is an all-ones vector of
length |V'|. Using this approximation it is a straightforward matter to show that
the path is the one that satisfies the condition

Vi vl

b = arg max ¢'FTFp = afgm%nz ZNi - IN (i) ()

i=1 j=1

Hence, the integration path will minimise the change in surface normal direction.
Our aim is to use the sequence of pixel sites given by the rank-order of the
eigenvector coefficients to define a serial ordering for the sites on the pixel lattice.
If we visit the sites of the pixel lattice in the order defined by the magnitudes of
the coefficients of the leading eigenvector of the normalised affinity matrix, then
the path is the steady state of the Markov chain. In this paper, we aim to exploit
this property to locate a connected path on the sites of the pixel lattice, and to
use this path for surface integration and height recovery. Unfortunately, the path
followed by the steady state random walk is not edge-connected. Hence, we need a
means of placing the pixel sites in an order in which neighbourhood connectivity
constraints are preserved using the elements of the leading eigenvector ¢..
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To do this we commence from the pixel site associated with the largest com-
ponent of ¢,, i.e. the largest site probability. We then sort the elements of the
scaled leading eigenvector such that they are both in the decreasing magnitude
order of the coefficients of the eigenvector, and satisfy edge connectivity con-
straints on the graph. The procedure is a recursive one that proceeds as follows.
At each iteration, we maintain a list of pixel sites visited. At iteration k let the list
of pixel sites be denoted by Ly. Initially, £y = jo where jo = argmax; ¢.(j), i.e.
jo is the component of ¢, with the largest magnitude. Next, we search through
the set of first neighbours NV}, = {k|(jo, k) € E} of j, to find the pixel site associ-
ated with the largest remaining component of ¢.. The second element in the list
is j1 = argmaxjen;, ¢«(1). The pixel site index j; is appended to the list of pixel
sites visited and the result is £1. In the kth (general) step of the algorithm we
are at the pixel site indexed ji and the list of pixel sites visited by the path so far
is L. We search through those first-neighbours of j; that have not already been
traversed by the path. The set of pixel sites is Cy, = {l|l € N, Al ¢ Li}. The
next site to be appended to the path list is therefore jip+1 = arg maxjec, ¢« ().
This process is repeated until no further moves can be made. This occurs when
Cr = () and we denote the index of the termination of the path by T'. The se-
rial ordering of the pixel sites that results from this edge-based sorting is the
integration path I' = L.

Our surface height recovery algorithm proceeds along the sequence of pixel-
sites defined by the order of the coefficients As we move from pixel-site to
pixel-site defined by this path we increment the surface-height function. The
trigonometry of the height incrementation process is as follows. At step n of
the algorithm we make a transition from the pixel with path-index j,_; to
the pixel with path-index j,. The distance between the pixel-centres associ-
ated with this transition is d,,. This distance together with the surface normals
N, = [Njn (2), Nj, (y): Nj., (Z)]T and Ny, _, = [Njn—l (2), Ny (Y), Ny, (Z)]T
at the two pixel-sites may be used to compute the change in surface height
associated with the transition. The height increment is given by

Cd [N, ) N, (@)
=5 {Nj w " NjM(y)}

If the height-function is initialised by setting z;, = 0, then the centre-height for
the pixel with path-index j, is 2z, , = 2j, + hn.

(3)

4 Experiments

We commence with some experiments on synthetic data. The aim here is to
determine the accuracy of the surface reconstruction method. To this end, we
have generated synthetic surfaces. From the surfaces, we have computed the field
of surface normal directions. We have then applied the graph-spectral method
to the field of surface normals to recover an estimate of the surface height.

In Figure 1, we show the results obtained for a series of different surfaces. In
the top row we show the original synthetic surface. The second row shows the
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Hill

Fig. 1. Top row: Artificially generated data; Second row: Reconstructed surface; Bot-
tom row: Error plot.

surface reconstructed from the field of surface normals. The bottom row shows
the absolute error between the ground-truth and reconstructed surface height.
From left-to-right, the surfaces studied are a dome, a sharp ridge, a torus and
a volcano. In all four cases the surface reconstructions are qualitatively good.
For the dome the height errors are greater at the edges of the surface where
the slope is largest. In the case of the ridge, there are errors at the crest. For
the volcano, there are some problems with the recovery of the correct depth of
the “caldera”, i.e. the depression in the centre. For the reconstructed surfaces,
the mean-squared errors are 5.6% for the dome, 10.8% for the ridge, 7.8% for
the torus and 4.7% for the volcano. Hence, the method seems to have greater
difficulty for surfaces containing sharp creases.

We have repeated these experiments under conditions of controlled noise. To
do this we have added random measurement errors to the surface height. The
measurement errors have been sampled from a Gaussian distribution with zero
mean and variance o = 1. In Figure 2, we show the result of reconstructing the
surfaces shown in Figure 1 when noise has been added. In the left-hand column
of the figure we show the field of surface normals for the noise-free surface. In
the second column, we show the field of surface normals for the noise-corrupted
surface. In the third column, we show the reconstructed height-function obtained
from the noisy surface normals. The fourth, i.e. rightmost, column shows the
difference between the height of the surface reconstructed from the noisy surface
normals and the ground-truth height function. In the case of all four surfaces,
the gross structure is maintained. However, the recovered height is clearly noisy.
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Fig. 2. Left-hand column: Needle-map without added noise; Second Column: Needle-
map with Gaussian noise added; Third column: Reconstructed surface; Fourth column:
Error plot.

The height difference plots are relatively unstructured. These are important
observations. They mean that our graph-spectral method simply transfers errors
in surface normal direction into errors in height, without producing structural
noise artefacts.

We have also applied our surface recovery method to needle-maps extracted
from real-world data using the shape-from-shading algorithm of Worthington
and Hancock [14]. In the columns of Figure 3 we show, from left-to-right, the
raw image, two views of the reconstructed surface and the integration path.
In each case the integration path seems to follow the height contours on the
surface, and both the overall geometry and the surface detail of the objects is
well reproduced.

5 Conclusions

In this paper, we have demonstrated how steady state random walks can be
used for path estimation on pixel lattices. We have illustrated the utility of the
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Fig. 3. Results on real-world imagery.

method for purposes of surface integration from fields of surface normals. Our
future plans are to develop a more sophisticated model. In this paper, we have
sought the path that is the steady state random walk of a Markov chain on
a graph. This is a type of diffusion process. A more principled approach may
be to pose the recovery of the integration path as the solution of a stochastic
differential equation. It may also be interesting to investigate whether the idea
of recovering a path using graph-spectral a methods can be applied to other 2D
curve enhancement problems.
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