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Abstract. In this paper, we investigate the use of heat kernels as a
means of embedding graphs in a pattern space. We commence by per-
forming the spectral decomposition on the graph Laplacian. The heat
kernel of the graph is found by exponentiating the resulting eigensystem
over time. By equating the spectral heat kernel and its Gaussian form
we are able to approximate the geodesic distance between nodes on a
manifold. We use the resulting pattern of distances to embed the trees
in a Euclidean space using multidimensional scaling. The arrangement
of points in this space can be used to construct pattern vectors suitable
for clustering the graphs. Here we compute a weighted proximity matrix,
and from the proximity matrix a Laplacian matrix is computed. We use
the eigenvalues of the Laplacian matrix to characterise the distribution
of points representing the embedded nodes. Experiments on sets of shock
graphs reveal the utility of the method on real-world data.

1 Introduction

One of the problems that arises in the manipulation of large amounts of graph
data is that of clustering. Broadly speaking, there are two approaches to the
problem. The first of these is to maintain a class prototype, and to cluster by
iteratively merging graphs together. The second approach, which avoids the need
to maintain a class prototype, is to apply pairwise clustering methods to the edit
distance between graphs. Unfortunately, both of these methods involve comput-
ing correspondences between nodes, and since this is potentially an NP-hard
problem, the computational overheads can be large. An alternative, which does
not involve computing explicit correspondences is to embed the nodes of indi-
vidual graphs in a low dimensional space and to characterise the graph using
the distribution of points corresponding to nodes. Central clustering techniques
can then be applied to vectors representing the features of the point-distribution
associated with the graphs.

In the mathematics literature, there is a considerable body of work aimed at
understanding how graphs can be embedded in manifolds [10]. Broadly speaking
there are three ways in which the problem has been addressed. First, the graph
can be interpolated by a surface whose genus is determined by the number of
nodes, edges and faces of the graph. Second, the graph can be interpolated by a
hyperbolic surface which has the same pattern of geodesic (internode) distances
as the graph [1] [6]. Third, a manifold can be constructed whose triangulation
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is the simplicial complex of the graph [12,2]. A review of methods for efficiently
computing distance via embedding is presented in the recent paper of Hjaltason
and Samet [4].

In the pattern analysis community, there has recently been renewed inter-
est in the use of embedding methods motivated by graph theory. One of the
best known of these is ISOMAP [7]. Here a neighborhood ball is used to con-
vert data-points into a graph, and Dijkstra’s algorithm is used to compute the
shortest(geodesic) distances between nodes. The matrix of geodesic distances is
used as input to MDS. The resulting algorithm has been demonstrated to locate
well-formed manifolds for a number of complex data-sets. Related algorithms
include locally linear embedding which is a variant of PCA that restricts the
complexity of the input data using a nearest neighbor graph, and the Laplacian
eigenmap that constructs an adjacency weight matrix for the data-points and
projects the data onto the principal eigenvectors of the associated Laplacian ma-
trix (the degree matrix minus the weight matrix) [3]. Collectively, these methods
are sometimes referred to as manifold learning theory.

One of the most interesting recent developments in this area has been to
establish a link between graph-spectra and the geometry of the underlying man-
ifold [5,8,9,11]. Here considerable insight can be achieved through the analysis
of the heat kernel of the graph [5,9]. According to the heat-equation the time
derivative of the kernel is determined by the graph Laplacian. The solution to
the heat equation is obtained by exponentiating the Laplacian eigensystem over
time. The heat kernel encapsulates the way in which information flows through
the edges of the graph over time, and is closely related to the path length distri-
bution on the graph. The graph can be viewed as residing on a manifold whose
pattern of geodesic distances is characterised by the heat kernel. For short times
the heat kernel is determined by the local connectivity or topology of the graph
as captured by the Laplacian, while for long-times the solution gauges the global
geometry of the manifold on which the graph resides.

The aim in this paper is to investigate whether the heat kernel can be used
for the purposes of embedding graphs, and in particular trees, on a low di-
mensional manifold. When the manifold on which the graph resides is locally
Fuclidean, then the heat kernel may be approximated by a Gaussian function
of the geodesic distance between nodes. By equating the spectral and Gaussian
forms of the kernel, we can make estimates of the geodesic distances. These dis-
tances may then be used to embed the graph in a low-dimensional space. Here we
follow the ISOMAP algorithm and use multdimensional scaling to locate a low-
distortion embedding of the geodesic distances. Once embedded in this space,
we can attempt to extract features that characterise the point-distribution of
the embbeded nodes and to use them for the purposes of clustering. To do this
we construct a weighted Laplacian matrix for the nodes of the embedded graph
by exponentiating the negative squared-distance between nodes. The spectrum
of eigenvalues of the Laplacian can be used for the purposes of tree clustering
and visualisation.
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2 Heat Kernels and Riemannian Manifolds

In this section, we develop a method for approximating the geodesic distance
between nodes by exploiting the properties of the heat kernel. To commence,
suppose that the graph under study is denoted by G = (V, E) where V is the
set of nodes and 2 C V' x V is the set of edges. Since we wish to adopt a graph-
spectral approach we introduce the adjacency matrix A for the graph where

Alu,v) = {1 if (u,v). €E (1)
0 otherwise

We also construct the diagonal degree matric D, whose elements are given by

D(u,u) = >, ¢y A(u,v). From the degree matrix and the adjacency matrix we

construct the Laplacian matrix L = D — A, i.e. the degree matrix minus the

adjacency matrix. The normalised Laplacian is given by L =D :LD . The

spectral decomposition of the normalised Laplacian matrix is

v
L=o10" =" Mool (2)
i=1

where A = diag(A1, Az, ..., \jy|) is the diagonal matrix with the ordered eigenval-
ues as elements and @ = (¢1|d2]....|¢|v|) is the matrix with the ordered eigenvec-
tors as columns. Since L is symmetric and positive semi-definite, the eigenvalues
of the normalised Laplacian fall in the interval [0, 2], i.e. they are all positive.
The eigenvector assoicated with the smallest non-zero eigenvector is referred to
as the Fiedler-vector. We are interested in the heat equation associated with the

Laplacian, i.e.
Ohy A
T in, 3)

where h; is the heat kernel and ¢ is time. The solution is found by exponentiating
the Laplacian eigenspectrum, i.e.

V]
hy =Y exp[—Nit]gi¢] = Pexp[—tA|P” (4)
i=1

The heat kernel is a |V] x |V] matrix, and for the nodes u and v of the graph G
the resulting component is

[V

hi(u,v) = Z exp[—Ait]¢i(u)pi(v) (5)

When t tends to zero, then hy ~ [ — I:t, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, ¢ is large,
then hy ~ exp|—tA\n|dmdL,, where )\, is the smallest non-zero eigenvalue and

o 1s the assoicated eigevector, i.e. the Fiedler vector. Hence, the large time
behaviour is governed by the global structure of the graph.



Heat Kernels, Manifolds and Graph Embedding 201

It is interesting to note that the heat kernel is also related to the path length
distribution on the graph. If Py(u,v) is the number of paths of length k& between
nodes u and v then

[v|?
hi(u,v) = exp[— ZPk U, v) k' (6)

The path-length distribution is itself related to the eigenspectrum of the Lapla-
cian. By equating the derivatives of the spectral and path-length forms of the
heat kernel it is straightforward to show that

V]
Peluy0) = (1 = A)F6u(u)a(v) (7)
i=1
When the graph is embedded on a manifold in Riemannian space then the
pattern of geodesic distances between nodes on the manifold is the same as the
path length distribution. However, when the manifold is locally Euclidean, then
the heat kernel is approximated by the Gaussian

1 2

()] (®)
where d(u,v) is the distance between the nodes u and v on the Euclidean mani-
fold and n is the dimensionality of the space. The aim here is to find an approx-
imation to the geodesic distance between nodes in the embbeding, by equating
the spectral and Gaussian forms for the kernel. The result is

hi(u,v) = [4mt] "% exp|—

V]

d(u,v) =2 _tln{(m)% Zexp[—/\it]gbi(u)gbi(v)} (9)

=1

We can consider the behaviour of this function for large and small values of t.
When ¢ is small, making use of the fact that hy = I — Lt, we have

d(u,v) = 2\/—1%{% In[47t] + In[1 — L(u, v)t]} (10)

Hence, the small ¢ behaviour determined by the local topology of the graph.
Moreover, since the second term under the-square-root vanishes, the behaviour
near t = 0 is independant of the structure of the graph. On the other hand, when
t is large we can write

d(u,v) = 2\/—15{%111[47715] - /\mt—l—lngbm(u)(bm(v)} (11)

For very large t we have that d(u,v) =~ t\/A,,, and hence the effect of local
edge-structure is completely smoothed away.

Although the parameter ¢ potentially provides a route to a graph scale-space,
here we set 47t = 1 to simplify the analysis.
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3 Multidimensional Scaling

Our aim is to embed the pattern of geodesic distances in a low dimensional
space in a manner which minimises the distortion. For this reason we turn to
multidimensional scaling(MDS), which is a procedure which allows data specified
in terms of a matrix of pairwise distances to be embedded in a Euclidean space.
The pairwise geodesic distances between nodes d(u,v) are used as the elements
of an |V| x |V dissimilarity matrix S, whose elements are defined as follows

S(U, ’U) _ { d(’u,'U) lf u # v (12)
0 ifu=v

In this paper, we use the classical multidimensional scaling method. The

first step of MDS is to calculate a matrix 7" whose element with row r and

column ¢ is given by T(r,c) = —1[d(r,c)> — d(r,.)> — d(.,c)* + d(.,.)?], where

d(r,.) = ‘71‘ Z'ci‘l d(r,c) is the average dissimilarity value over the rth row,

d.. is the dissimilarly defined average value over the cth column and ci(, D)=
ﬁzwll Z‘Vll d(r,c) is the average dissimilarity value over all rows and

r= c=
columns of the dissimilarity matrix 7'.

We subject the matrix 7' to an eigenvector analysis to obtain a matrix of
embedding co-ordinates X. If the rank of T is k,k < |V, then we will have
k non-zero eigenvalues. We arrange these k£ non-zero eigenvalues in descending
order, i.e. Iy > ls > ... > I > 0. The corresponding ordered eigenvectors
are denoted by wu; where [; is the ¢th eigenvalue. The embedding co-ordinate
system for the graphs obtained from different views is X = [f1, f2,..., s,
where f; = /l;u; are the scaled eigenvectors. For the tree-nodes indexed i, the
embedded vector of co-ordinates is x; = (X; 1, Xi2, ..., Xis)” .

4 Characterising the Embedded Point Distribution

Once the nodes of a graph have been embedded, we can attempt to characterise
the structure of the graph by summarising the distribution of points associated
with the nodes. Although there are many alternatives that can be used for this
purpose, including statistical moments, here we opt to use a graph-spectral char-
acterisation of the points. To this end, we commence by computing a weighted
proximity matrix W with elements

2
Wiy = { o0l 3t o, — il < (13)

0 otherwise

Ti) —Tig
o2

where o is a scale constant and r is the radius of a neigbourhood hypersphere
in the embedding space. Unfortunately, the matrix W may have negative eigen-
values. Hence, we turn our attention instead to the Laplacian matrix, since it is
positive semi-definite and therefore has positive or zero eigenvalues. The Lapla-
cian matrix is Ly = W — A where A is diagonal degree matrix with elements
A(iy i) = Zjev W (i, 7). The spectral decomposition of the Laplacian matrix is
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Lg = 2?:1 Mie;e; T, where )\f is the ith eigenvalue and e; is the corresponding
eigenvector of the Laplacian matrix L. Our spectral characterisation of the graph
is based on the vector of N leading Laplacian eigenvalues B = (\q,...., An)T.
We can perform pattern analysis on sets of graphs by applying clustering or
dimensionality reduction techniques to the the vectors of Laplacian eigenvalues.

Our aim is explore the structure of a set of graphs with pattern vectors By,
k = 1, M. There are a number of ways in which the spectral pattern vectors
can be analysed. Here, for the sake of simplicity, we use principal components
analysis. We commence by constructing the matrix V.= [B1|Bs| ... |Bg|...|Ba/]
with the graph feature vectors as columns. Next, we compute the covariance
matrix for the elements of the feature vectors by taking the matrix product
C = VVT. We extract the principal components directions by performing the
eigendecomposition C = Zf\il liuiu;fp on the covariance matrix C, where the [;
are the eigenvalues and the u; are the eigenvectors. We use the first s leading
eigenvectors ( 2 or 3 in practice for visualisation purposes) to represent the
graphs extracted from the images. The co-ordinate system of the eigenspace is
spanned by the s orthogonal vectors U = (uj, ug, .., us). The individual graphs
represented by the long vectors By, k = 1,2,..., M can be projected onto this
eigenspace using the formula x;, = U7 By,. Hence each graph G, is represented
by an s-component vector x; in the eigenspace.

5 Experiments

In this section we experiment with the application of our clustering algorithm
to shock graphs. We tested our algorithm on a database of 150 silhouettes of 10
kinds of objects. A representative view of each object is shown in Figure 1.

B & W « Y
E S BRSNS

Fig. 1. Sample views of the 10 objects

In our experiments, we will compare the results obtained by using our algo-
rithm with those obtained by using direct spectral analysis of trees. The direct
spectral analysis of trees commences by first constructing the Laplacian matrix
L for the tree. Then we use the leading Laplacian eigenvalues \; of the matrix
L to construct the spectral feature vector B = (A1, ...., Ax ). After the spectral
feature vectors have been extracted from the trees, we apply PCA (principal
component analysis).
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Fig. 2. Direct spectral analysis (left) and heat-kernel analysis (right)

Our first experiment compares our algorithm with the direct spectral analysis
of the trees from the entire database of 150 shock trees. In Figure 2 the left-hand
panel shows the result of the direct spectral analysis of the shock trees, while
the right-hand panel is the result of applying our heat kernel analysis. There
is a legend in the top left-hand corner of each plot that explains the shape
correspondence of each of the symbols. There are a number of points that can
be drawn from these plots. First, in the case of the direct spectral analysis the
data distribute themselves along a trajectory in the embedding space. This may
be attributable to the problem of co-spectrality of the trees. However, after the
heat kernel analysis is performed, the trees distribute themselves over the 2D
space. Moreover, in the case of the direct spectral analysis the different shapes
are interspersed along the trajectory. It is hence not possible to allocate the
shapes to reliably assign shapes to classes on the basis of their position in the
plots. The possible exception is that the horses and leafs are separated at the
bottom right hand corner of the plot. In the case of the heat kernel analysis, the
trees could be better separated. Although there is considerable overlap near the
center of the plot, it appears that there is scope for separating the screwdrivers,
pliers and leafs.

In our second experiment, we have repeated the procedure above for a smaller
database which contains only three representative shapes. The three shapes used
for test are the hands, the leafs and the men. For each shape there are 15 different
views corresponding to different viewing directions. The left-hand panel of Figure
3 shows the results of direct spectral analysis, while the right-hand panel shows
the result of heat kernel analysis. In the case of the direct spectral analysis, the
shapes are poorly separated. In the case of the heat kernel analysis, there is good
separation.

To further investigate this three-class data, in Figure 4 the two panels show
the distances dr(ki,k2) = (Bg, — Bk,)? (Bk, — By,) between the vectors of
eigenvalues for the trees indexed kjand ko. The left-hand panel is for the direct
spectral analysis of the trees and the right-hand panel is for the spectral vectors
extracted by performing the heat-kernel embedding. Here the classes emerge as
clear blocks in the distance matrix for the heat-kernel embedding, while for the
direct spectral analysis the block structure is more confused.
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Fig. 4. Distance matrices for direct spectral analysis (left) and heat kernel analysis
(right)

6 Conclusion and Future Work

In this paper we have explored how the use of heat kernels can lead to a measure
of geodesic distance that can be used for the purposes of embedding graphs in low
dimensional Euclidean spaces. The distance measure is found by equating the
spectral and Gaussian forms of the heat kernel. We show how MDS can be used
to embed the the distances, and how a spectral characterisation of the embedded
graphs can be used for graph-clustering. We experiment with the method on sets
of shock trees. Here the characterisation which results from the geodesic analysis
is better than that obtained from the raw spectral features of the graphs. There
are clearly a numbert of ways in which the work reported in this paper can be
extended. For instance, it would be interesting to study the controlled effects of
varying the time parameter, and to see if this leads to a natural definition of
“scale-space” for the graphs.
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