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Abstract. Language models are used in a variety of fields in order to
support other tasks: classification, next-symbol prediction, pattern anal-
ysis. In order to compare language models, or to measure the quality of an
acquired model with respect to an empirical distribution, or to evaluate
the progress of a learning process, we propose to use distances based on
the Lo norm, or quadratic distances. We prove that these distances can
not only be estimated through sampling, but can be effectively computed
when both distributions are represented by stochastic deterministic finite
automata. We provide a set of experiments showing a fast convergence of
the distance through sampling and a good scalability, enabling us to use
this distance to decide if two distributions are equal when only samples
are provided, or to classify texts.

1 Introduction

A common task to machine translation [1], speech recognition [2], optical charac-
ter recognition [3] or computational biology [4] is that of constructing a language
model. Typical language models are n-grams [5], but HMMs also can be used [6].
Finite automata have been considered as alternative language models for nearly
10 years [7], with an extension to stochastic automata more adapted to the task
[8]. In a more general setting, stochastic or probabilistic automata have been
used in structural and syntactic pattern recognition for a number of years [9].
How to derive a grammar or an automata from data is usually called grammat-
ical inference or grammar induction: This has been studied in the framework of
pattern recognition [10, 11], with applications to textures in images, fingerprints
classification, dynamic systems or recognition of pictures of industrial objects.
The problem of learning a stochastic finite automaton is generally considered
to be a hard but important one [12], with smoothing a decisive component of
language modeling. Clearly, a better understanding of stochastic automata, and
moerover of their topological properties is necessary in order to better learn
them or compare them. Not much work has been done in this direction: Work
linked with the results we report here has been done by Fred [13], who computes
the weight of a language following a distribution, or Lyngsg et al. [4] who prove
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that computing the Lo-distance is tractable between distributions over finite
sets, or Carrasco who computes the Kulback-Leibler divergence between regular
distributions [14] or the Lo-distance between distributions over trees [15].

We can thus identify the following tasks related with language modeling:
measure how well a sample corresponds to a distribution or how close a hypoth-
esis language is from a target, or even how close two samples are one from the
other. Traditionally researchers in the field have used perplexity as its measure for
the above questions, with the Kullback-Leibler divergence closely related to this
measure between a true or target distribution ® and a hypothesis or candidate
distribution ®':

dKL @ @ E Prg log PI"@ (w)
Pro: (w)
weX*

The Kullback-Leibler divergence suffers from a number of drawbacks:

1. It is not a distance. Therefore topological operations are not easy, and using
samples to represent a distribution is not reasonable.

2. In the case where some string has a null probability in ®’, but not in
®, then the Kullback-Leibler divergence is infinite. This implies that over-
generalization is necessarily going to appear. The language model can only
be considered when it is properly smoothed. But in this case it is hard to
know if (when concerned with testing) what we are measuring is the quality
of the model or that of the smoothing or alternatively of both, combined,
which may be what we are looking for.

These seems to be good reasons to propose an alternative measure to see how
close one distribution is to another. Furthermore this measure should be a dis-
tance, computable and easy to calculate, and not require the models to be
smoothed for computation to be possible. We give in section 2 the definitions of
stochastic deterministic finite automata (DPFA), regular distributions, and the
probability functions that are associated. Distances between DPFA are defined
and studied in section 3. In section 4, we experimentally study the distances:
A first set of experiments (section 4.1) on the well-known Reber grammar [16]
show that our measure can give a good estimation of the quality of the learned
automata. In section 4.2, we show that the speed of convergence of the distance
of a sample to the model is sufficiently fast to be able to decide in practice from
which automaton a sample is generated. These experiments are made on arti-
ficial data corresponding to parity functions, which are usually considered as a
hard case for learning. Then, section 4.3 deals with experiments on real data:
firstly, we show the Lo distance compares favorably to perplexity on a typical
speech language modeling task; a second set of experiments (section 4.4) on
French poems shows that the distance can be used in classification tasks. They
also show the scalability of these methods. In section 5 we discuss further work
and conclude.
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2 Probability Distributions over Sequences

Definition 1 (Distribution over strings). Let X' be an alphabet i.e. a finite
set of letter, {a,b,...}. A string w is an element from X*. The length of a string
w is denoted by |w|. The unique string with length 0 is X, |A| = 0. A probability
function is a function such that Vw € ¥*, 0 < Prp(w) and ), .. Pro(w) = 1.

Definition 2 (Dpfa). A DPFA is a tuple A = (X4, QA4,q14,0%: D%, fa) where
X A is a finite alphabet, e.g. {a,b}, QA is a set of states, {qo,q1,q2,- .-, q -1}
qr, 5 the unique initial state, 0% : Q4 x X4 — Q4 defines a transition function,
Py Qa x X4 — [0,1] is a probability function, fa : Qa — [0,1] defines the
probability that a state is final.
Non-deterministic automata exist, but shall not be used in this paper. In the
following, when no ambiguity is possible, we will forget subscript 4.

To be able to deal with strings, we generalize the automaton probability and
transition functions:

Definition 3 (Generalized probability and transition functions). Let
w € X* be a string, let A be an DPFA, and q a state,

_ [ fala) fw=X
palg,w) = {p::(%a) -pa(6%(q,a),x) else (w =ax,a € ¥,z € X*)
Pl ) = {5A<5;<q,a>,x> else (w=ar,a € ¥,z € 3)

Definition 4. w4 is the prefix probability function:
Vw e X*, ma(w) = Z pa(wz)
reX*
The definitions are linked as follows:
Yw € X7, p(w) = m(w) - f(6(qr, w))
Yw e X, Va € X, m(wa) = w(w) - p*(6(qr,w), a)

Yw € X", m(w) = p(w) + Z m(wa)
acX

3 Distances between Two Dpfa

In this section we define two measures over string probability distributions. Tech-
nically a first step is to compute, given A and A’ two DPFA, the product prob-
ability of reaching two states ¢ in A and ¢’ in A’:

Definition 5. Let (¢,¢') € Qa X Qu,
Nag" = Z Ta(w) - mar (w)

weX*:
dalar, w)=q
S.ar(ar,, w)=q'
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We describe here a method to compute 744, When X* is not a finite set of
strings, the above sum may not be easily computable. We adapt the efficient
method that computes the ds distance over trees [15] to the string case. The
method computes iteratively 744 .

Note that A is the only null-length prefix and m74(\) = w4 (\) = 1. That
allows us to write:

Magar, =14+ > Y > e Pu(ga) pu(da)

qEQ A q’EQA/ acX:
dalg,a)=q1 4

S (d'a)=ar ,,

and Vq S Q.Auq/ S Q.A’ 7& (qI_AquA/)

M = D D, D e Palsa) pu(sa)
SEQA s'EQ 41 a€X:

da(s,a)=q

S0 (8" a)=q
The above relation corresponds to a system of linear equations. To solve it ef-
ficiently, when convergence is clear, terms are computed iteratively during a
predefined number k of steps. Complexity then is O(|Qa| - |Qa/| - |X] - k).

In order to compare two distributions, we first evaluate the co-emission prob-

ability of each string, i.e. the probability that A and A’ generate independently
a same string.

Definition 6. The Co-emission probability of A and A’ is

CoEm(A, A') = > (pa(w) - pa(w))

weX*
= > D g fala) - fald)
q€EQ A ¢’ €Q 4/

If comparing samples, co-emission may be null when large vocabulary and
long strings are used. It is then reasonable to compare not only the whole strings,
but their prefixes:

Definition 7. As above, the Prefixial Co-emission probability of A and A’ is
CoEmPr(A, A') = Z (ma(w) - 7a(w))
we X
Note that CoEmPr is directly linked to n coefficients.
The above co-emission measures allow us to define two distances for the Ly norm:

Definition 8 (d; distance between two models). The distance for the Ly
norm, denoted by ds is defined as:

2(AA) = [ (palw) —pa(w))®

weX*

which can be computed easily by using:
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da(A, A') = /CoEm(A, A) + CoEm(A", ') — 2 CoEm(A, A

Definition 9 (dg, distance between two models). The prefixial distance
for the Ly norm, denoted by dap is defined as:

dop(A,A) = | Y (ma(w) — mar(w))®

we X

Theorem 1. dy and dap, are distances over X* (see [17] for the proof).

4 Experiments — Results

4.1 Identification Task

The Reber artificial grammar [16] has been used to prove that human language
learning is implicit (no conscious rules). Figure 1 shows a DPFA representing this
grammar. We compare here distance ds and perplexity pp between a learned
automaton and the target one.

Fig. 1. Reber grammar

We built learning samples with different sizes (100, 500, 1000 strings). Al-
gorithm MDI [8] is used to learn an automaton from these samples. MDI is a
state merging algorithm with currently the best results for language modeling
by DPFA tasks; It makes use of a parameter («) to adjust learning.

0.25

Fig. 2. Comparison between perplexity and distance d2 in the exact identification task

Figure 2 shows the results for a sample of size 500, but other sizes give similar
results: The structure of the automaton is well identified, but the probabilities
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are better estimated when sample size becomes larger. Size is drawn in log-scale
format. The point corresponding to a 8 states automaton is actually reached by
5 automata learned with 5 different settings of the a parameter (in the range
{0.005,0.08}). Both pp and ds are minimal with the same values of « (i.e. on the
same learned automaton) corresponding to the case where the target structure
is obtained. Over- and under-generalization (which does not reach the correct
structure) yields worse results. Again, it should be noted that the ds results have
been obtained without smoothing the automaton; This is an advantage of the
technique.

4.2 Discrimination and Sample Robustness

In this section, the aim is to show that the ds distance is robust for sampling,
or, in other words, is able to help us deciding if a sample is generated from
one automaton or another. A set of experiments and evaluation of the distance
behavior was carried out on artificial data. Parity functions [18] have been used
in various occasions as examples of functions that are hard to learn. A parity
function accepts strings if the total number of bs in a certain number of pre-
defined positions is even. To define this kind of functions as automata, we use
inversion positions expressions which are strings of n digits from {0,1}. They
classify strings over a 2-letter alphabet X' = {a,b}. A parity function f will ei-
ther accept a string of length n with an even number of bs in inversion positions
(marked by a 1), or a string of length n + 1 with an odd number of bs in those
positions.

Fig. 3. fi DPFA representation

For the experiment we created three functions/languages: f; which represents
expression 101101 (represented Figure 3). f2 corresponds to expression 011010
and f3 has the same structure as f; with small differences on transition proba-
bilities. Computation of the distance ds is made on 15 samples (s;) of different
sizes (from 10 to 10000 strings).

Results are shown on Figure 4. X axis represents the size of the data sets for
each function. Both X and Y axis are in logarithmic scale.

Figure 4 shows that lim,| o da(sq, f;) = da(fi, f;). Moreover the conver-
gence is fast. A second point is that with n > 200 we have a real difference
between da(s1, f1) and the other computations. That allows us to hope to be
able to detect if a set has been sampled from a given automaton. We can also,
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d2(31»‘f1> e
do(sg, f1)
dg(sg, f1)
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Fig. 5. Behavior of the perplexity and the d2 distance on ATIS database

as a relative result, note that the da(ss, f1) curve is always under the one for
da(s2, f1). We note that fi is closer to f3 than to fo. Actually f; and f5 represent
the same language with small differences on string probabilities.

4.3 Evaluation of the Quality of a Language Model

In this section, we show that the dy distance can be a used as a good measure to
evaluate if a learned automaton is a good language model or not. As described in
the introduction, perplexity is often used to estimate this by using a test sample
for validation. Here, we compare do and perplexity between a learned automaton
and a test sample. We use the ATIS database [19]. The learning algorithm is
this time Alergia [20]: The merging process depends on Heeffding bounds (a
statistical test is performed) and a generalization parameter «. The original
algorithm is slightly modified in order to learn only acyclic automata. After
learning automata with different « values, we compute perplexity and ds between
the learned automaton and a test sample. To compute perplexity we need to
smooth the automaton; we choose a simple smoothing method: interpolation
with a 1-gram. The results of the experiment are synthesized on Figure 5. X
axis is displayed in log scale format.
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Table 1. Success rates

||Collection| da ra‘ce|d2p rate|# poems|# strings|# symbols”

CH1 2.30 99 70.11 % 87 2381 46686
CH2 8.82 9% 75.00 %| 68 3067 61322
CM 1 100.00 % 73.33 % 15 1079 27243
CM 2 100.00 % 53.33 % 30 1398 26483

Globally, do behavior is close to that of pp. Moreover, we note that the
optimal automata for do and pp have similar sizes. Thus, distance ds can be
considered as a good measure to estimate the quality of language learned model.
Again, we do not need to smooth the automaton to use this measure, which
allows it to be more objective when we only want to compare learning methods.

4.4 Classifying Authors

In this section, we use distance da to classify texts from different authors. We
used four collections of poems, two from Victor HUGO (cy1,cne) and the two
others from Alphonse de LA MARTINE (cm1,cMm2). Each collection is used to
learn a language model (intended to represent the poet). From each collection
units of text (poems) are extracted. We then pair the collections (cp; with e ;)
and for each poem from collection 1 (resp. 2) compare it with poets ¢y and
em2 (resp. e and cepp). The experiment is successful if the distance between
the poem and the poet is less than the distance from the poem to the other
language model.

We present in table 1 the success rates of good classification for all the four
collections, with percentages of good classification and number of poems, sen-
tences (strings), word (symbols) of each collection. Globally, distance dy provides
poor results: this is due to the fact that individual verses (the string unit) are sel-
dom repeated in different poems. In this case, the basic ds classifier returns the
poem collection with the smallest co-emission probability. Distance dz, obtains
more convincing results: Common prefixes are reused by a poet. It should be
noted that results are only preliminar; We expect a distance measuring common
sub-strings to obtain better results.

5 Conclusion

The results reported in this paper indicate that distance ds is an alternative to
perplexity for language modeling tasks. A certain number of questions arise from
our experiments: A theoretical study of the convergence rate would be helpfull;
Identification of the type of automata for which each distance is best suited is an
important task; We would like to continue the work on authors in order to enter
the debate over affiliations; And finally it would be nice to extend the prefix
distance, corresponding to a sub-string distance, and (this is harder) compute it
in a similar way?
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