
A New Uniform Translocation Distance

Carlos Mart́ın-Vide2 and Victor Mitrana1,2

1 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 70109, Bucharest, Romania

2 Research Group in Mathematical Linguistics, Rovira i Virgili University
Pça. Imperial Tarraco 1, 43005, Tarragona, Spain

{cmv,vmi}@fll.urv.es

Abstract. A basic problem in the area of combinatorial algorithms for
genome evolution is to determine the minimum number of large scale
evolutionary events (genome rearrangements) that transform a genome
into another. The present paper is a contribution to the algorithmic
study of genom evolution by translocations which is an area related to
pattern recognition. Furthermore, it may be viewed as a contribution to
other areas related to pattern recognition like: error estimation, genetic
programming, disease diagnosis. In this paper we consider chromosomes
as being linear strings that exchange each other prefixes in the translo-
cation process. A new type of translocation distance between a pair of
multi-chromosomal genomes is introduced; we examine the complexity
of computing this distance in the case of uniform translocation, that is
at each step the strings exchange prefixes of the same length. We present
an exact polynomial algorithm based on the “greedy” strategy when the
target set is a singleton while a 2-approximation algorithm is provided
when considering arbitrary target sets. Some open problems are finally
formulated.

1 Introduction

Genomes of arbitrarily complex organisms are organized into chromosomes that
contain genes which may be considered as being arranged in linear order. Se-
quence alignment was actually the first step in molecular evolution studies but
in many cases sequence alignment is quite unreliable which makes further evo-
lutionary tree reconstruction almost impossible. It has been often found that
the order of genes is much more conserved than the DNA base sequence. In the
course of evolution, the genome of an organism mutates not only by processes at
the level of individual genes (point mutations: insertion, deletion or substitution
of individual bases) but also by some large-scale rearrangements in one evo-
lutionary event. Recently much attention has been given by this phenomenon.
One may argue that evolutionary and functional relationships between genes
can be captured by taking into considerations only local mutations. However,
the analysis of the genomes of some viruses (Epstein-Barr and Herpes simplex
viruses, see for instance [7, 13]) have revealed that the evolution of these viruses

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 278–286, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A New Uniform Translocation Distance 279

involved a number of large-scale rearrangements in one evolutionary event. Fur-
thermore, comparing plant and animal mitochondrial DNA, the point mutation
is estimated to be 100 times slower in plant than in animal, many genes are
nearly identical (more than 99% of them are identical) in related species [17].
These molecules which are almost identical in gene sequence differ fundamen-
tally in gene order. At this level, point mutations are less meaningful compared
to arrangements of gene fragments. See also [2, 7], for further discussions on this
topic.

Chromosomal rearrangements include pericentric and paracentric inversions,
intrachromosomal and interchromosomal transpositions, translocations, etc. For
a description of these rearrangements, the reader is referred to [21]. Translocation
is the biological process of exchanging material of the end of two chromosomes
and could result in a different genotype[12]. Such non-local operations might
permit an investigation of the evolutionary history for rather diverged organisms
that cannot be identified from the study of point mutations alone [19, 20]. Recent
developments in large-scale comparative genetic mapping seem to offer exciting
prospects for understanding mammalian genome evolution [4]. A grammatical
model based one these non-local operations can be found in [5] and [6]

The aim of this paper is to introduce a new type of translocation distance
and to investigate the complexity of computing this distance for uniform (equal-
length) translocation. This is a particular type of translocation which takes part
just between chromosomes that exchange prefixes of equal length.

Prior work dealing with the combinatorial analysis of genome operations has
focused on evolution distance in terms of inversions, transpositions or transloca-
tions for chromosomes formed from different markers which correspond to unique
segments of DNA. From the formal point of view this means that in traditional
genome rearrangement sorting problems the input data consists of permutations
of n labels, but this approach cannot capture duplication events. In this paper,
we considered chromosome as a nucleotide sequence unlike a unique marker se-
quence. Perhaps, this approach will not be practical for a while for lack of such
data, but we looked to this problem from a mathematical point of view only.
Kececioglu and Sankoff ([14, 15]) developed exact and approximation algorithms
for two types of inversion distance which was shown to be NP-complete [3]. More
recently [9] proposes a polynomial algorithm for signed inversion distance. Bafna
and Pevzner reported approximation algorithms for transposition distance [1].
Two highly relevant papers which present the first polynomial algorithms for
computing translocation distances are [10, 11]. Kececioglu and Ravi [16] dis-
cussed exact and approximation algorithms for distance involving translocations
alone as well as together with inversions. Some applications of these results to
biological data are now underway [2, 8]. The reader is also referred to [18] for a
review of open combinatorial problems motivated by genome rearrangements.

Our work differs from the aforementioned approaches in many respects: the
strings representing chromosomes may have multiple occurrences of the same
symbol, they may have common symbols, the number of copies of all strings in
the initial set is assumed arbitrarily large.

280 Carlos Mart́ın-Vide and Victor Mitrana

2 Preliminaries

Let V be a given alphabet (practically this alphabet is the DNA alphabet
{A, T, C, G}); chromosomes may be viewed as strings over this alphabet. The
set of all nonempty strings over V is denoted by V +. For each string x ∈ V +,
whose length is denoted by |x|, x[i, j] delivers the substring of x that starts at
position i and ends at position j in x, 1 ≤ i ≤ j ≤ |x|. Conventionally, x[i, j] is
the empty string in all cases j < i. For two strings x, y over an alphabet V and
two integers 1 ≤ i < |x|, 1 ≤ j < |y|, we define the translocation operation

(x, y) �(i,j) (z1, z2) iff x = tu, y = vw, z1 = tw, z2 = vu, and |t| = i, |v| = j.

The pair of natural numbers (i, j) indicates the length of the prefixes they in-
terchange with each other. When we are not interested about the length of
these segments, we write simply �. Let us note that, from a chromosome and its
replica, say xyz, one may get two other chromosomes xyyz and xz. It is worth
mentioning here that this type of recombination is known as crossover between
”sister” chromatids and it is the main way of producing tandem repeats or block
deletions in chromosomes. We extend the translocation operation to a finite set
of strings A ⊆ V + by TO(A) =

⋃
x,y∈A{z, w|(x, y) � (z, w)}.

Let A be a finite set of strings such that each string of A has arbitrarily many
available copies. In other words, A may be viewed as the support of a multiset
of strings each of them having arbitrarily many copies. Define iteratively

TO0(A) = A, TOk+1(A) = TOk(A)∪TO(TOk(A)), TO∗(A) =
⋃

k≥0

TOk(A).

A translocation sequence in TO∗(A) is a sequence S = s1, s2, . . . , sn, where for
each 1 ≤ i ≤ n si = (xi, yi) �(ki,pi) (ui, vi), for some xi, yi, ui, vi ∈ TO∗(A) and
1 ≤ ki < |xi|, 1 ≤ pi < |yi|. Given a translocation sequence S as above and
x ∈ TO∗(A) we define

Pi(S, x) = card{j ≤ i|x = xj or x = yj} + card{j ≤ i|xj = yj = x},

Fi(S, x)=
{

card{j ≤ i|uj = xj or vj = yj} + card{j ≤ i|uj = vj = x}, if x /∈ A,
∞, otherwise.

The length of a translocation sequence S = s1, s2, . . . , sn is denoted by lg(S)
and equals n. A translocation sequence S as above is contiguous iff the following
two conditions are satisfied:

(i) x1, y1 ∈ A,
(ii) Fi−1(S, xi) > Pi−1(S, xi), and Fi−1(S, yi) > Pi−1(S, yi), for all 1 ≤ i ≤ n.

The second condition is very natural if one considers that the copies of the two
strings that exchange prefixes are not available anymore for further translocation
steps; it claims that at each translocation step at least one copy for any of the
two strings involved in this step is available. By CTS we mean a contiguous
translocation sequence. Let B be a finite subset of TO∗(A); a CTS S as above
is B-producing if Fn(S, z) > Pn(S, z) for all z ∈ B. In other words, S is B-
producing if at the end of all translocation steps form S we have at least one copy

A New Uniform Translocation Distance 281

at each string in B. Roughly speaking, the translocation distance from A to B
(TD(A, B) shortly) is defined as the minimal number of steps strictly necessary
to get B starting from A, providing that at each step just one translocation takes
place. Formally,

TD(A, B) = min{lg(S)|S is a B − producing CTS in TO∗(A)}.
Sometimes we refer to B as the target set. In the sequel we are dealing with
the complexity of computing the translocation distance defined above for the
case of uniform translocation i.e. all strings exchange prefixes of equal length.
We distinguish two cases depending on the cardinality of target sets: singleton
target sets and arbitrary target sets.

3 Singleton Target Sets

As we said above, by uniform translocation we mean a special type of transloca-
tion so that prefixes which are to be exchanged are of the same length. Formally,
the translocation operation �(i,j) is said to be uniform iff i = j, so that we shall
simply write �i.

In the case of uniform translocation with a singleton target set, without loss
of generality we may assume that the initial set of strings contains only strings
of the same length, that is the length of the target string. The simple proof of
this statement is left to the reader. In conclusion, throughout this section the
strings in the initial set and the target string will be all of the same length.

Suppose that A = {x1, x2, . . . , xn} and let z be an arbitrary string of length
k; the following measure will be very useful in the sequel:

MaxSubLen(A, z, p) = max{q| ∃ 1 ≤ i ≤ n such that xi[p, p+q−1] =
z[p, p + q − 1]}.

Note that with uniform translocation, a letter at position i in a string remains
at position i after moving to another string. Assume that z ∈ TO∗(A); define
iteratively the set H(A, z) of intervals of natural numbers as follows:
1. H(A, z) = {[1, MaxSubLen(A, z, 1)]};
2. Take the interval [i, j] having the largest j; if j = k, then stop, otherwise
put into H(A, z) the new interval [j + 1, j + MaxSubLen(A, z, j + 1)].

Note that we allow intervals of the form [i, i] for some i to be in H(A, z);
moreover, for each 1 ≤ i ≤ k there are 1 ≤ p ≤ q ≤ k (possibly the same) such
that i ∈ [p, q] ∈ H(A, z).

Lemma 1 Let S be a z-producing CTS in TO∗(A). Then,
lg(S) ≥ card(H(A, z)) − 1.

Proof. We prove this assertion by induction on the length k of z. For k = 1 the
assertion is trivially true because z must be in A, hence H(A, z) contains just
one element. Assume that the assertion is true for any string shorter than k. Let
us consider a CTS S = s1, s2, . . . , sq in TO∗(A) producing z. Moreover, we may
assume that si = (xi, yi) �pi (ui, vi), 1 ≤ i ≤ q, and z has been obtained in S at
the last step, that is either uq = z or vq = z. Let

282 Carlos Mart́ın-Vide and Victor Mitrana

A′ = {x[MaxSubLen(A, z, 1) + 1, k]|x ∈ A}, z′ = z[MaxSubLen(A, z, 1) + 1, k].
For simplicity denote r = MaxSubLen(A, z, 1). Clearly, H(A′, z′) = {[i − r, j −
r]|[i, j] ∈ H(A, z)\{[1, r]}}, hence card(H(A′, z′)) = card(H(A, z))−1. Starting
from S we construct a CTS in TO∗(A′), producing z′ S′ = s′1, s′2, . . . s′m in the
way indicated by the following procedure:

Procedure Construct CTS(S,r);
begin
m := 0;
for i := 1 to q begin

if (pi > r) then
m := m + 1; s′m = (xi[r + 1, k], yi[r + 1, k]) �pi−r (ui[r + 1, k], vi[r + 1, k]);

endif;
endfor;
end.

Claim 1: S’ is a CTS.
Proof of the claim. Firstly, we note that for each 1 ≤ i ≤ q so that pi ≤ r, the
relations ui[r + 1, k] = yi[r + 1, k] and vi[r + 1, k] = xi[r + 1, k] hold. Assume
that pi1 , pi2 , . . . , pim are all integers from {p1, p2, . . . , pq} bigger than r. Because
all p1, p2, . . . , pi1−1 equal at most r, it follows that both xi1 [r + 1, k], yi1 [r + 1, k]
are in A′. Now, it suffices to prove that for a given 2 ≤ j ≤ m, the relations

Fj−1(S′, xij [r + 1, k]) > Pj−1(S′, xij [r + 1, k]),
Fj−1(S′, yij [r + 1, k]) > Pj−1(S′, yij [r + 1, k]),

hold. We shall prove the first relation only. It is not hard to see that

Fj−1(S′, xij [r + 1, k]) =
∑

x[r+1,k]=xij
[r+1,k]

Fij−1(S, x) − card(X) − card(Y),

Pj−1(S′, xij [r + 1, k]) =
∑

x[r+1,k]=xij
[r+1,k]

Pij−1(S, x) − card(X) − card(Y),

where

X ={t ≤ ij − 1|pt ≤ r, ut[r + 1, k] = vt[r + 1, k] = xij [r + 1, k]},
Y ={t ≤ ij − 1|pt ≤ r, ut[r + 1, k] = xij [r + 1, k] or vt[r + 1, k] = xij [r + 1, k]}.
In conclusion, as S is a CTS, it follows that Fj−1(S′, xij [r + 1, k]) > Pj−1(S′,
xij [r + 1, k]), and the proof of the claim is complete.

Claim 2: S’ is z’-producing.
Proof of the claim. More generally, we shall prove by induction on i that S′ is
producing ui[r + 1, k] and vi[r + 1, k] for all 1 ≤ i ≤ q. The assertion is trivially
true for i = 1. Assume that the assertion is true for all t ≤ i; we shall prove it
for i + 1. If ui+1[r + 1, k] is in A′ or pi+1 > r, we are done. If pi+1 ≤ r, then
ui+1[r + 1, k] = yi+1[r + 1, k]; for yi+1 /∈ A we have Fi(S, yi+1) > 0, hence there
exists t ≤ i such that ut = yi+1 or vt = yi+1. By the induction hypothesis, S′ is
producing ut[r + 1, k] which concludes the proof of the second claim.

But there exists at least one i such that pi ≤ r, it follows that m ≤ q− 1. By
the induction hypothesis, m ≥ card(H(A′, z′))− 1, and the proof is complete. �

The next result is a direct consequence of this lemma.

A New Uniform Translocation Distance 283

Theorem 1 Let z be a string of length k and A be a set of cardinality n. There
is an exact algorithm that computes TD(A,z) in O(kn) time and O(kn) space.

Proof. The following algorithm indicates how to construct a CTS S = s1, s2 . . . ,
sm in TO∗(A) producing z, when z /∈ A, whose length is exactly card(H(A, z))
− 1.

Procedure Uniform translocation CTS construction(A,z);
begin
p := MaxSubLen(A, z, 1); let x be a string in A with x[1, p] = z[1, p];
m := 0;
while p < k begin

r := MaxSubLen(A, z, p + 1);
if r = 0 then THE STRING z CANNOT BE OBTAINED FROM A;

stop
else

let y be a string in A with y[p + 1, p + r] = z[p + 1, p + r];
m := m + 1
sm = (x, y) �p (u, v)};
p := p + r;
x := u;

endif
endwhile;
end.

It is easy to see that if the algorithm successfully terminates, then either u
or v is exactly z, and the length of the CTS determined by the algorithm is
exactly card(H(A, z)) − 1. By the previous lemma, this in an optimal value. As
one can easily see the time complexity of this algorithm is given by the complex-
ity of computing the values MaxSubLen(A, z, p), which is O(kn). Obviously, it
requires O(kn) memory. �

4 Arbitrary Target Sets

We shall try to adapt the techniques used in the previous section for arbitrary
target sets, too. Let A be a finite set of strings and z ∈ TO∗(A); denote by

MaxPrefLen(A, z)=






|z|, iff z ∈ A,
max({q|q < |z|, there exists x ∈ A, |x| > q,

so that x[1, q]=z[1, q]} ∪ {0}),
MaxSufLen(A, z)=max({q| there exists x ∈ A, |x| ≥ |z|,

so that x[|x| − q + 1, |x|]=z[|z| − q + 1, |z|]} ∪ {0}),
ArbMaxSubLen(A, z, p)=max({q| there exists x ∈ A and |x| ≥ p + q

such that x[p, p + q − 1]=z[p, p + q − 1]} ∪ {0}).
We define iteratively the set ArbH(A, z) of intervals of natural numbers as

follows, provided that all parameters defined above are nonzero:
1. ArbH(A, z) = {[1, MaxPrefLen(A, z)]};
2. Take the interval [i, j] having the largest j; if j = |z|, then stop. If j < |z| −
MaxSufLen(A, z), then put the new interval [j+1, j+ArbMaxSubLen(A, z, j+
1)] into ArbH(A, z); otherwise put [j + 1, |z|] into ArbH(A, z).

284 Carlos Mart́ın-Vide and Victor Mitrana

Theorem 2 1. Let A be a finite set of strings and B be a finite subset of TO∗(A).

Then
∑

z∈B
(card(ArbH(A,z))−1)

2 ≤ TD(A, B) ≤ ∑
z∈B(card(ArbH(A, z)) − 1).

2. There exist A and B ⊆ TO∗(A) such that TD(A, B) =∑
z∈B

(card(ArbH(A,z))−1)

2 .

3. There exist A and B ⊆ TO∗(A) such that TD(A, B) =∑
z∈B(card(ArbH(A, z)) − 1).

Proof. 1. We shall prove the first assertion by induction on the length of the
longest string in B, say k. The non-trivial relation is

∑
z∈B

(card(ArbH(A,z))−1)

2 ≤ TD(A, B). (∗)
If k = 1, then B ⊆ A, hence card(H(A, z)) = 1 for all z ∈ B, therefore the

relation (∗) is satisfied. Assume that the relation (∗) holds for any two finite
sets X and Y , Y ⊆ TO∗(X), all strings in Y being shorter than k. Assume
that B \ A = {z1, z2, . . . , zm} and let S = s1, s2, . . . , sq, si = (xi, yi) �pi (ui, vi),
1 ≤ i ≤ q, be a B \ A-producing CTS in TO∗(A). Note that at least one string
in B \ A should exist, otherwise the relation (∗) being trivially fulfilled.

Consider m new symbols a1, a2, . . . , am and construct the sets:
A′ = {x[1, r]aix[r + 2, |x|]|x ∈ A, 1 ≤ i ≤ m}, B′ = {zi[1, r]aizi[r + 2, |zi|]|1 ≤
i ≤ m},, where r = min{pi|1 ≤ i ≤ q}. One can construct a B′-producing CTS
in TO∗(A′) of the same length of S, say S′ by applying the next procedure.

Procedure Convert(S);
begin
for j := 1 to m begin

z := zj; t := q;
while z /∈ A begin
find the maximal l ≤ t such that ul = z or vl = z;
t := l − 1;
if ul = z then replace ul by ul[1, r]ajul[r + 2, |ul|];

if pl > r then z := xl;
replace xl by xl[1, r]ajxl[r + 2, |xl|];

else z := yl;
replace yl by yl[1, r]ajyl[r + 2, |yl|];

endif;
else replace vl by vl[1, r]ajvl[r + 2, |vl|];

if pl ≤ r then z := xl;
replace xl by xl[1, r]ajxl[r + 2, |xl|];

else z := yl;
replace yl by yl[1, r]ajyl[r + 2, |yl|];

endif;
endif;

endwhile;
replace z by z[1, r]ajz[r + 2, |z|];

endfor;
replace the symbol on the position r + 1 in all strings in S that
have not been replaced so far by a1;
end.

Now we apply the procedure in the proof of Lemma 1 to the sequence S′

for r previously defined. The obtained sequence S′′ is a B′′-producing CTS in
TO∗(A′′), where

A New Uniform Translocation Distance 285

A′′ = {aix[r + 2, |x|]|x ∈ A, 1 ≤ i ≤ m}, B′′ = {aizi[r + 2, |zi|]|1 ≤ i ≤ m},
due to the two claims from the proof of Lemma 2.
For each 1 ≤ i ≤ m card(ArbH(A′′, aizi[r +2, |zi|])) is either card(ArbH(A, zi))
or card(ArbH(A, zi))−1. Moreover, for each i such that card(ArbH(A′′, aizi[r+
2, |zi|])) = card(ArbH(A, zi)) − 1 there exist at least one step in S′ where the
strings exchange prefixes of length at most r. It follows that lg(S′′) ≤ lg(S′) −

t/2�, where t = card({i|card(ArbH(A′′, aizi[r+2, |zi|])) = card(ArbH(A, zi))−
1}). Consequently,

lg(S)= lg(S′) ≥ lg(S′′) +
t/2� ≥
∑m

1 (card(ArbH(A′′, aizi[r + 2, |zi|])) − 1)
2

+

t/2� ≥
∑m

1 (Arbcard(H(A, zi)) − 1)
2

.

The reader may easily find sets A and B fulfilling the last two assertions. �

An α-approximation algorithm for a minimization problem is a polynomial
algorithm that delivers a solution whose value is at most α times the minimum.
From the previous theorem we have:

Theorem 3 There is a 2-approximation algorithm for computing the transloca-
tion distance from two sets of strings.

Proof. Obviously, an algorithm that computes
∑

z∈B(card(ArbH(A, z))−1) re-
quires O(n|B|), where n = card(A) and |B| is the sum of the lengths of all
strings in B. �

5 Conclusion

We have introduced a new translocation distance between two finite sets of
strings and proposed an algorithm, based on the “greedy” strategy, for comput-
ing this distance when the target set is a singleton. This is a constraint that does
not exclude many interesting biological applications. All results presented here
are valid for a particular type of translocation, namely the uniform translocation
where the strings exchange with each other prefixes of the same length. This re-
striction might be considered rather far from reality, but, even so, the problem of
finding a polynomial algorithm to compute the translocation between two finite
sets remains open. The next step is naturally to consider the case of arbitrary
translocation which is a more appropriate abstraction of the practical problem.
We hope to return to this topic in a forthcoming paper.

References

1. V. Bafna, P.A. Pevzner, Sorting by transpositions. In Proceedings of the 6th ACM-
SIAM Symposium on Discrete Algorithms, 1995.

2. V. Bafna, P.A. Pevzner, Sorting by reversals: genome rearrangements in plant
organelles and evolutionary history of X chromosome, Mol. Biol. Evol. 12 (1995),
239–246.

286 Carlos Mart́ın-Vide and Victor Mitrana

3. A. Caprara, Sorting by reversal is difficult. In Proc. of the First Annual Interna-
tional Conference on Computational Molecular Biology (RECOMB 97), ACM New
York, 1997, 75–83.

4. N. G. Copeland et al. A genetic linkage map of the mouse: Current applications
and future prospects. Science, 262(1993), 57–65.

5. J. Dassow, V. Mitrana, A. Salomaa, Context-free evolutionary grammars and the
language of nucleic acids. BioSystems, 4(1997) 169–177.

6. J. Dassow, V. Mitrana, Operations and grammars suggested by the genome evo-
lution, Theoretical Computer Science, 270, 1-2 (2002), 701–738.

7. D.J. McGeoch, Molecular evolution of large DNA viruses of eukaryotes. Seminars
in Virology 3 (1992) 399–408.

8. S. Hannenhalli et al. Algorithms for genome rearrangements: herpesvirus evolution
as a test case. In Proc. of the 3rd International Conference on Bioinformatics and
Complex Genome Analysis, 1994.

9. S. Hannehalli, P. A. Pevzner, Transforming cabbage into turnip: polynomial al-
gorithm for sorting signed permutations by reversal, J. of the ACM 46, 1 (1999)
1–27.

10. S. Hannehalli, P. A. Pevzner, Transforming men into mice (polynomial algorithm
for genomic distance problem). In Proc. of the IEEE 36th Annual Symposium on
Foundation of Computer Science, 1995, 581–592.

11. S. Hannehalli, Polynomial algorithm for computing translocation distance between
genomes. In Combinatorial Pattern Matching, Proc. of the 6th Annual Symposium
(CPM’95), LNCS, Springer-Verlag, 162–176.

12. D. L. Hartl, D. Freifelder, L. A. Snyder, Basic Genetics, Jones and Bartlett Publ.,
Boston, Portola Valley, 1988.

13. S. Karlin, E. S. Mocarski, G. A. Schachtel. Molecular evolution of herpesviruses:
genomic and protein comparisons. J. of Virology, 68(1994),1886–1902.

14. J. Kececioglu, D. Sankoff, Exact and approximation algorithms for sorting by re-
versals, with application to genome rearrangements. In Proc. of the 4th Symposium
on Combinatorial Pattern Matching, Springer-Verlag, LNCS 684, 1993, 87–105.

15. J. Kececioglu, D. Sankoff, Efficient bounds for oriented chromosome-inversion
distance. In Proc. of the 5th Symposium on Combinatorial Pattern Matching,
Springer-Verlag, LNCS 807, 1994, 307–325.

16. J. Kececioglu, R. Ravi, Of mice and men: Algorithms for evolutionary distances
between genomes with translocation. In Proceedings of the 6th ACM-SIAM Sym-
posium on Discrete Algorithms, 1995, 604–613.

17. J.D. Palmer, L.A. Herbon, Plant mitochondrial DNA evolves rapidly in structure,
but slowly in sequence. Journal of Molecular Evolution, 27(1988), 87–97.

18. P. A. Pevzner, M. S. Waterman, Open combinatorial problems in computational
molecular biology. In Proc. of the 3rd Israel Symposium on Theory of Computing
and Systems, IEEE Computer Computer Society Press, Los Alamitos, California,
1995, 158–163.

19. D. Sankoff, Edit distance for genome comparison based on non-local operations. In
Proc. of the 3rd Symposium on Combinatorial Pattern Matching, Springer-Verlag,
LNCS 644, 121–135, 1992.

20. D. Sankoff et al. Gene order comparisons for phylogenetic inference: Evolution of
the mitochondrial genome, Proc. Natl. Acad. Sci. USA, 89(1992),6575–6579.

21. E. Therman, M. Susman, Human Chromosomes, Structure, Behavior, and Effects.
Springer-Verlag, 1993.

	1 Introduction
	2 Preliminaries
	3 Singleton Target Sets
	4 Arbitrary Target Sets
	5 Conclusion
	References

