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Abstract. The Auction Graph Matching (AUGM) algorithm is pre-
sented. This algorithm is based on a novel joint probabilistic framework
that transforms the graph matching problem into a linear assignment
problem which is efficiently solved by the Bertsekas auction algorithm.
A salient feature of this single-pass auction-based approach is that the
inferred match probabilities are not only constrained over all objects in
the reference image, but are also constrained over all objects in the input
image.

1 Introduction

Representing the structural descriptions of objects by weighted graphs, reduces
the problem of contextual correspondence matching to finding error-correcting
graph or sub-graph isomorphisms, also referred to as the Graph Matching (GM).
As pointed out in Refs. [1], [2] and [3] the graph matching problem is closely
related to the Quadratic Assignment Problem which can be solved using a va-
riety of neural, annealing, graduated assignment and other iterative methods.
In general the Quadratic Assignment Problem is more difficult to solve than
the Linear Assignment Problem. Several breakthroughs to efficiently solve the
Linear Assignment Problem such as those detailed in Refs. [4] and [5] indicate
that there is much to gain if the GM problem can be transformed into a Linear
Assignment Problem. A method for achieving this transformation is presented
in this paper.

Although Quadratic Assignment approaches are not in general directly in-
terpretable using Bayesian frameworks such as those detailed in Refs. [6]-[15],
the Auction Graph Matching (AUGM) algorithm is built on a Bayesian foun-
dation. A Joint Probabilistic Framework is derived in the sequel that leads to
a Linear Assignment Problem which can be efficiently solved by the Bertsekas
auction algorithm [4]. The Joint Probabilistic Framework differs significantly
from previous probabilistic approaches for contextual correspondence and graph
matching, detailed in Refs. [6]-[15], in the following aspects: (1) Instead of di-
rectly inferring P(6; = 6},), the probability of associating a vertex in the input
graph with a vertex in the reference graph, our main focus is on the inference
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of the joint probabilities P(6; = ?kﬂj =0;) from which P(#; = 0,) are inferred.
(2) Similar to the work of Kittler et al. [8], the AUGM is a single-pass tech-
nique. (&) Conventional probabilistic methods only constrain the probability of
a vertex in the input graph being associated with a vertex in the reference graph
over all the vertices in the reference graph. To further minimize the possibility
of false matches the AUGM algorithm also constrains the probability of a vertex
in the input graph being associated with a vertex in the reference graph, over all
the vertices in the input graph. (/) The AUGM algorithm does not rely on the
use of compatibility functions specified in terms of the face-units of the graph
under match, sparse graph structures or Bayesian edit distances based on these
notions.

2 Notation

Suppose an input graphs has n vertices represented by
2 ={b,...0,}.

The objective is to calculate the probability of a vertex #; in the input graph,
being associated with a vertex 6, in a reference graph having 7 vertices, repre-
sented by

2=1{0,...0,}.

In our framework it is assumed that n > n and that the probability values
P(6; = 0)) are constraint by

> P0; =0;) =1, 1)

and

If, in addition it is required that
P(6; = By) € {01} (4)

then equations 1 to 4 represent the enforcement of two way assignment con-
straints. Previous Bayesian frameworks were in general not able to enforce con-
straint 2 or 3.

For each pair of vertices 6; and 6;, i # j, we assume there are s binary
measurements corresponding to the attributes of the edges of the input graph:

Aij:{AE;)7,..,AZ(.;)}7 i£j i,j=1,..n.
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3 Bayesian Reasoning Framework

As usual we will assume that the conditional probability density function
p(Aij|0; = Ox,0; = 0) (5)

corresponds to the compatibility coefficients calculated between edges of the
input and references graphs using edge attributes. See for example Kittler et
al. [8] , Christmas et al. [6] or Faugeras and Price [16]. We will now investigate
how Eq. 5 relates to the joint probabilities P(¢; = 0 6; = 6;). Our approach
drastically differs from previous approaches in the sense that we do not try to
estimate or calculate the probabilities P(6; = 0;|A;;) directly. Instead our main
computational focus is on the inference of the joint probabilities P(0; = 0 0; =
;) from which all P(; = 0},) are estimated using a simple weighted summation
process. It is important to note that to infer P(f; = 6y ), the probabilities of
associating a vertex in the input graph with a vertex in the reference graph,
our framework only relies on edge attributes. Self edges (self arcs) and vertex
attributes are not considered. As a consequence p(A;;|0; = ?kﬁj = 51) and
P(0; = 0x,0; = 0,) where i = j or k = [ are not considered in our framework and
the independence assumption, i.e. P(6; = 0;.0; = 0,) = P(0; = 0x)P(0; = 0)),
holds. Observe that according to Bayes’ theorem

P(0; = 0x,0; = 01| Aij) = p(Ay| ks 73 ) P( k.Y 1)

= — — —, (6)
>k P(Aij|0; = 01,05 = 01) P(6; = 05,,60; = 0,)

where i # j or k # I. Since all p(A;;|0; = 0,0, = 0;) are fixed (via some
compatibility calculation) the only way to maximize the a posteriori probability
P(0; = 0x,0; = 0,|A;;) is by adjusting the joint probabilities P(0; = 0, 6, = 6;),
ie.
P(0; = 1, 0; = G| Aij) =
( k05 = Ol Aig) PO,= 000, &)
p(AZJ|91 = ?k, 9j = ?l)P(QZ = gkﬂj = ?l)
>k P(Aij|0; = 0,05 = 0,)P(0; = 0x,0; = 61)

where i # j or k # [ subject to the constraints associated with P(6; = 0.0, = 0;)
given by

P0; =0,0; =0,) =1, (8)
kel i, k#l
0< Y PO:=0x0,=0)<1, (9)
4,7, 5,k#1
0< PO, =0,0; =0,) <1. (10)

Constraints 8 to 10 were derived using Eqs. 1 to 3 and the fact that P(0; =
0,0, = 0,) = P(0; = 0;)P(9; = 0;). Finding the constraint joint probabilities
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P9, = ?kﬂj = 0;) which maximize P(#; = ék,ej = §l|Aij) over all 7, j can be
formulated as the following constrained optimization problem

. _ — — 2
min Z (p(Aij|0; = 04, 0; = 0) — P(0; = 01,0, = 0)) (11)
ikl

with respect to P(6; = 0;.0; = 0;) where i # j or k # [, subject to Egs. 8 to 10.

3.1 Joint Probability Inference

Since P(6; = Ekﬂj =0,) =P6; = 51,6‘]- = 0},) when our graphs are undirected
and both these joint probabilities will belong to the same row of an assignment
matrix we cannot directly impose the constraint P(6; = 0, 60; = 0;) € {0;1}.
However, the fact that P(6; = 0, 0; = 0,) = P(0; = 0,.0; = 0;) when our graphs
are undirected implies that not all the joint probabilities P(6; = §k79j = 0;) need
to enter Eq. 11, conveniently reducing the dimension of the problem. In fact we
only need to consider the indices in the set

{iujakJ}j:iJrl ..... n l=k+1,...,n (12)

wherei =1,...,nand k = 1, ..., provided that all final values for P(6; = 5;676‘]- =
;) are halved after solving the lower dimensional problem. It also implies that
we can now impose the binary constraint P(6; = 0.6, = 0;) € {0;1} on the
lower dimensional problem and efficiently solve it using an optimal assignment
algorithm. Figure 1 details the time, averaged over a 1000 runs, to execute the
Bertsekas auction optimal assignment algorithm [4] written in C on a Pentium IV
platform running Windows XP. The generation time of random input matrices is
included in our time calculations. As expected the time required per assignment
calculation is dependent on the number of undirected edges in the input and
reference graphs. For undirected fully-connected graphs of the type considered
in this paper the number edges are given by n = Z?:_ll (n—1i) where n represents
the number of vertices in the graphs.

Note that the cardinality of the subset {i,j}, ,_, , isn = E;:ll(n — 1)
and that the cardinality of the subset {k,l}, ,_, 5 is7 = SP_l(@ — k). The
dimension of the matrix passed to the Auction algorithm will therefore be 1 x 7.
Consequently the rows of the assignment matrix are indexed by o = 1,...,n
where « is related to indices ¢ and j by oo = (j — @) + >+ |Us|where j < i, U,
is defined as the set {i = s,j}j=it1,...,n and |-| denotes cardinality. Similarly the
columns of the assignment matrix are indexed by 5 = 1, ..., where [ is related
to indices k and [ by 8 = (I — k) + Zle |Us| where | < k and Uy is defined as
the set {k = s,l}i=it1,.. 7

4 Auction Assignment Algorithm for Graph Matching

Similar to the auction algorithm detailed in Ref. [4] we associate with each
column of our assignment matrix (joint probability matrix) a price, say pg. For
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our application we started by setting all the prices to zero. Let pag := p(6; =
01,0; = 01| A;j) where o and 3 are related to indices i, j, k, [ as described in the
previous section. A row « is defined as almost happy with a column 3 assigned
to it if
PaBa = Pp. = max_{pas—pp} — 9,
pf=1,....n

where J is a slack variable.

The auction process then proceeds by selecting a row, o, which has not been
assigned a column 3, or is not almost happy. This row finds a column (3, which
offers maximal value, i.e.

Ba € arg max {pag — pa}-
pB=1,....n

Then

1. Row « exchanges its previous [, (if it had one) with the row its new [, was
assigned to at the beginning of the round.
2. The price pg associated with . is set to pg = pg + maxg {pas — ps} —

maxg.g, {Pap — pg} + 0.

The process is repeated in a sequence of rounds until all rows « are almost
happy. The slack value, § determines how fast the algorithm will converge and
how optimal the final answer will be. For all our experiments we have set §
to a small fixed value that will guarantee convergence to an optimal solution
as described in [4]. When the procedure terminates the joint probability values
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Fig. 1. Execution time of the Bertsekas auction routine.
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PO, = ?kﬂj =0, = PO, = 51791- = 0},) corresponding to a row-column assign-
ment are set to 0.5 (see previous section for reason why not set to one). The rest
of the joint probability values are set to zero.

4.1 Marginal Probability Inference

After obtaining the constraint joint probabilities P(6; = 0r.0; = 0;) the desired
probabilities P(6; = 0}) can be inferred using the following proposition:

Proposition 1. The probabilities inferred by

> itgriazr PO =0k 05 = 81)
n—1

P(6; = By) = (13)

will satisfy the constraints given by Eqs. 1 to 3 if the joint probabilities P(0; =
0r,0; = 61) satisfy the constraints given by Egs. 8 to 10.

Proof: Observe that 3 jiizjraP(0i = 0.0, = 0) = 1 and that
Z j,k,l,j;éi,k;élp(ei _: _0k10j = 91) = n — 1 which implies that
Zkzj’l‘#i‘#kfgi:ekﬂj:91) = 1. Eq. 1 is therefore satisfied. Similarly 0 <

Y ightizi P(0i = 0,05 = 0) < 1and 314,50k, P(0i = 01,0, = 0)) <7 — 1
which implies that 0 < Ziz "‘l’j#'#’“f_(eli:e’“ej:91) < 1. Eq. 3 is therefore satis-
fied since it is assumed that n > n.

4.2 Final Assignment

Once all P(§; = 0) are inferred, the most appropriate 0 for a given 6; is
obtained by B
n%aX{P (0; = 0k) bi=r1,....5- (14)
k

It’s easy to see that if all edge attributes are unique and no additive noise is
present in the input graph that P := (P (91- = Hk)) will be an assignment matrix
satisfying constraints 1 to 4.

5 Simulation Results

To test the performance of the AUGM algorithm dynamic random line match-
ing experiments, similar to those proposed by Caelli and Caetano [18], were
conducted. We prefer this type of experiment above the usual static applications
such as stereo line matching, the matching of road networks or buildings as this
allow us, through the addition of progressive noise and random line selection, to
derive representative (application specific) performance curves for the algorithms
included in our comparison. Although lines were used to represent the vertices
of a graph, vertex features were not derived nor used. Binary relationships be-
tween lines were used as edge attributes. The differences in orientation between
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lines, line length ratios and distances between line midpoints were used. Refer
to Li [19] for more information on the derivation of translation and orientation
invariant line features.

For our experiments reference graphs having 50 vertices (derived from a ran-
domly generated line image with line lengths uniformly distributed between 10
and 300 pixels) were used. For the first experiment input graphs were constructed
by randomly rotating and translating all 50 lines of the reference line images.
To test the robustness of the algorithms against line endpoint anomalies, uni-
form noise was added to the x and y coordinates of every line endpoint of the
translated and rotated image. Noise values were obtained by multiplying a ran-
dom variable — uniformly distributed on the interval [—1/2,1/2] — by the noise
magnitude parameters given in figures 2 and 3. For the second experiment in-
put graphs were constructed by randomly selecting 20 lines from the reference
images before rotating, translating and adding noise.

We compared the performance of the AUGM algorithm to the performance of
the non-iterative probabilistic method for contextual correspondence matching
of Kittler, Petrou and Christmas (KPC) [8] since it is one of the most well-
known single-pass methods available, and similar to the AUGM algorithm, has
a probabilistic origin. The AUGM is also compared to Bayesian Successive Pro-
jection Graph Matching (BAYSPGM) algorithm described in [17] since it is a
single-pass technique derived by the authors which preceded and inspired AUGM
methodology. The estimated probability of correct vertex-vertex assignments are
reported in figures 2 and 3. These results were calculated for a given value of
noise magnitude by averaging the results from 200 trials. All algorithms were im-
plemented using the Gaussian compatibility function described in Ref. [6] (with a
diagonal covariance matrix) and the Faugeras-Price (FP) compatibility function
described in [16]. Although both compatibility functions were implemented for
all three algorithms only the best results obtained are reported. For the results
reported in figure 2 the AUGM algorithm was implemented using a Gaussian
compatibility function, and the KPC and BAYPGM algorithms using the FP
compatibility function. For the results reported in figure 3 the KPC and AUGM
algorithms were implemented using a Gaussian compatibility function and the
BAYSPGM algorithm using the FP compatibility function. From our results we
conclude that (for the application considered in this paper and the given com-
patibility functions) the AUGM algorithm performed significantly better than
the BAYSPGM algorithm, and that it performed slightly better than the KPC
algorithm for full-graph matching case.

6 Conclusion

A joint probabilistic framework was presented that transforms the GM prob-
lem into a Linear Assignment Problem that was solved in an efficient manner
using the Bertsekas auction algorithm. From the derivation of the joint proba-
bilistic framework it is clear that the formulation inherently makes provision for
input graphs with missing vertices. A strategy for handling spurious edges in
the input graphs and incorporating vertex features has been devised but due to
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Fig. 2. Matching 50 translated and rotated input lines to 50 reference lines: Estimated
probability of a correct vertex-vertex matching versus noise magnitude.
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Fig. 3. Matching 20 translated and rotated input lines to 50 reference lines: Estimated
probability of a correct vertex-vertex matching versus noise magnitude.

page constraints is beyond the scope of this paper. Work in progress include the
derivation of a hybrid auction algorithm to directly solve the graph matching
problem without first transforming it to a linear assignment problem.
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