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Abstract. In this paper, we present a new neural network model, called
graph neural network model, which is a generalization of two existing
approaches, viz., the graph focused approach, and the node focused ap-
proach. The graph focused approach considers the mapping from a graph
structure to a real vector, in which the mapping is independent of the
particular node involved; while the node focused approach considers the
mapping from a graph structure to a real vector, in which the mapping
depends on the properties of the node involved. It is shown that the
graph neural network model maintains some of the characteristics of the
graph focused models and the node focused models respectively. A su-
pervised learning algorithm is derived to estimate the parameters of the
graph neural network model. Some experimental results are shown to
validate the proposed learning algorithm, and demonstrate the general-
ization capability of the proposed model.

1 Introduction

In several applications, the data can be naturally represented by graph struc-
tures. The simplest kind of graph structures is a sequence, but, in many appli-
cation domains, the information is organized in more complex graph structures
such as trees, acyclic graphs, or cyclic graphs. In machine learning, the struc-
tured data is often associated with the goal of either supervised or unsupervised
learning from examples, a function h which maps a graph G and one of its nodes
n to a vector of reals1: h(G, n) ∈ Rm.

In general, applications to a graphical domain can be divided into two classes:
called graph focused and node focused applications, respectively.

In graph focused applications, h is independent of the node n and imple-
ments a classifier or a regressor on a graph structured dataset. For example, an
image can be represented by a Region Adjacency Graph (RAG) where the nodes
1 Note that in classification problems, the mapping is to a set of integers Im, while

in regression problems, the mapping is to a set of reals Rm. Here for simplicity of
exposition, we will denote only the regression case.
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denote homogeneous regions of the image and the arcs represent their adjacency
relationship (see Fig. 1(a)). In this case, h(G) may be used to classify the image
into different classes, e.g., castles, cars, people, and so on.

In node focused applications, h depends on n, so that the classification (or
the regression) relates to each node. Object localization is an example of this
class of applications. It consists of finding whether an image contains a given
object or not, and, if so, detect its position. This problem can be solved by
a function h which classifies the nodes of the RAG according to whether the
corresponding region belongs to the object or not. For example, in Fig. 1(a), the
output of h might be 1 for the black nodes, which correspond to the castle, and
0 otherwise. Another example comes from web page classification. The web can
be represented by a graph where nodes stand for pages and edges represent the
hyperlinks (see Fig. 1(b)). The web connectivity can be exploited, along with
page contents, for several purposes, e.g. classifying the pages into a set of topics.

www.ing.unisi.it www.ing.unisi.it/people

www.ing.unisi.it/~franco

www.ing.unisi.it/~marco

www.uow.edu.au/~markus
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(a) (b)

Fig. 1. Some applications where the information is represented by graphs: (a) an image;
and (b) a subset of the web.

Most applications cope with graph structured data using a preprocessing
phase which maps the graph structured information to a simpler representation,
e.g. vectors of reals. However, important information, e.g., the topological de-
pendency of information on node n may be lost during the preprocessing stage
and the final result may depend, in an unpredictable manner, on the details of
the preprocessing algorithm. More recently, there are various approaches [3, 1]
attempting to preserve the graph structured nature of the data, for as long as
required, before processing the data. In other words, these approaches attempt
to avoid the preprocessing step of “squashing” the graph structured data into a
vector of reals first, and then deal with the preprocessed data using a list based
data processing technique, rather than paying special attention to the underlying
graph structured nature of the data. In these recent approaches, the idea is to
encode the underlying graph structured data using the topological relationship
among the nodes of the graph. In other words, these recent approaches attempt
to incorporate the graph structured information in the data processing step. In
the graph focused approaches [3, 11, 5] this is done using recursive neural net-
works and in the node focused approaches [1, 8, 12], this is done commonly by
using random walk techniques.
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In this paper, we present a new neural network model which is suitable for
both graph and node focused applications. This new model unifies these two
existing models into a common framework. We will call this new neural network
model a graph neural network (GNN). It will be shown that GNN is an extension
of both recursive neural networks and random walk models and that it retains
their characteristics.

The model extends recursive neural networks since it can process a more gen-
eral class of graphs including cyclic, directed and undirected graphs, and to deal
with node focused applications without any preprocessing steps. The approach
extends random walk theory by the introduction of a learning algorithm and by
enlarging the class of processes that can be modeled.

The structure of this paper is as follows: The notation used in this paper
as well as preliminary materials are described in Section 2. Then, the concept
of a graph neural network model, together with a learning algorithm for the
parameter estimation of the model are presented in Section 3. Furthermore,
some experimental results are presented in Section 4, and some conclusions are
drawn in Section 5.

2 Notation and Preliminaries

In the following, ‖ · ‖1 denotes norm 1, i.e. for a vector V = [v1, .., vk], ‖V ‖1 =
∑k

i=1 |vi|, for a matrix M = {mi,j}, ‖M‖1 = maxj

∑
i |mi,j |. A graph G is a

pair (N , E), where N = {n1, . . . , nr} is a set of nodes and E = {e1, . . . , ep} a set
of edges. The set of children and parents of n are denoted by ch[n] and pa[n],
respectively. The set ne[n] stands for the nodes connected to n by an arc: for
directed graphs, we have ne[n] = pa[n]∪ch[n], and for undirected graphs, ne[n] =
pa[n] = ch[n] holds. Similarly, the set of arcs entering and emerging from node
n are represented by to[n] and from[n], respectively, while co[n] represents their
union. Nodes and edges may have labels, which we assume to be represented by
real vectors. The labels attached to node n and edge (n1, n2) will be represented
by Ln ∈ RlN and L(n1,n2) ∈ RlE respectively. Given a set of integers S and a
set of vectors yi, i ∈ S , yS denotes the vector obtained by stacking together
the yi. Thus, for example, Lch[n] stands for the vector containing the labels of
all the children of n.

Remark 1. Labels usually include features of objects related to nodes and fea-
tures of the relationships between the objects. For example, in the case of a
RAG (Fig. 1(a)), node labels may represent properties of the regions (e.g., area,
perimeter, average color intensity), and edge labels the relative position of the
regions (e.g., distance between baricenters and the angle between the momen-
tums). Similarly, in the example shown in Fig. 1(b), node and edge labels can
include a representation of the text contained in the documents and in the anchor
texts, respectively.

No assumption is made on the nature of the arcs, directed and undirected
edges are both permitted. However, when different kinds of edges coexist in the



Graphical-Based Learning Environments for Pattern Recognition 45

same dataset, it is necessary to distinguish among them. Such a goal can be easily
reached by attaching a proper label to each edge. Thus, in this case, different
kinds of arcs turn out to be just arcs with different labels.

The purpose of the proposed method is to learn by examples a function
h : G × N → Rm, where G is any set of graphs and N is the set of their nodes.
Thus, a learning data set is a set of three tuples L = {(Gi, ni, ti)|Gi = (Ni, Ei) ∈
G, ni ∈ N , ti ∈ Rm, 1 ≤ i ≤ m}. A three tuple (Gi, ni, ti) denotes the fact that
the desired target for node ni (of graph Gi) is ti.

Remark 2. The learning data set may contain any number of graphs. In the
limit it is possible both from a theoretical and a practical point of view that
the whole dataset comprises of a single graph. The dataset consists of nodes
with their associated data and the learning problem is well defined provided
that there are reasonable numbers of nodes both in the learning data set and
in the testing data set respectively. The problem of classifying web pages is a
straightforward example of the limiting case. The web is represented by one single
graph, the learning data set consists of some pages whose desired classification is
known, whereas the classification of other pages on the web should be obtained
by generalization.

Finally, our approach is based on fixed point theory and contraction mappings
[7]. Here, we use the following simple fixed point theorem.

Theorem 1. If g : IRd → IRd is differentiable and there exists 0 ≤ e < 1 such
that

∥
∥
∥ ∂g

∂x (x)
∥
∥
∥

1
≤ e where ∂g

∂x is the Jacobian matrix of g, then g is a contraction
function. Thus, the following system

x = g(x)

has one and only one solution x∗. Moreover, the sequence

x(t) = g(x(t − 1))

converges exponentially to x∗ for any x(0).

3 A New Neural Network Model

The intuitive idea underlining the proposed approach is that graph nodes rep-
resent objects or concepts and edges represent their relationships. Thus, we can
attach to each node n a vector xn ∈ Rs, called state, which collects a represen-
tation of the object denoted by n 2. In order to define xn, we observe that the
related nodes are connected by edges. Thus, xn is naturally specified using the
information contained in the neighborhood of n, which includes the label of n,
the labels of the edges which are connected to n, and the states and the labels
of the nodes on the neighborhood of n, respectively (see Figure 2).
2 More precisely, xn should collect all the information which is relevant for deciding

the output h(G, n) in correspondence of n.
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Fig. 2. The state x1 depends on the neighborhood information.

More precisely, let Fw be a parametric function that expresses the dependence
of a node on its neighborhood. The states xn are defined as the solution of the
following system of equations

xn = F w(xn, Ln, xne[n], Lco[n], Lne[n]), 1 ≤ n ≤ r (1)

where Ln, Lco[n], xne[n], Lne[n] are the label of n, the labels of its edges, the
states and the labels of the nodes in the neighborhood of n respectively.

Remark 3. Definition (1) is customized for undirected graphs. When dealing
with directed graphs, Lco[n] should be replaced by Lfrom[n], Lto[n] and similarly,
xne[n], Lne[n] by xch[n], xpa[n], and Lch[n] Lpa[n], respectively. In the following
sections, in order to keep the notations simple, we maintain this customization.
However, unless explicitly stated, all the results hold also for directed graphs
and mixed undirected and directed graphs.

Remark 4. Equation (1) should be considered only an example of the possible de-
pendences of a node on its neighborhood. More generally, xn could be computed
from a subset of the parameters in (1) or, on the other hand, the neighborhood
could include nodes which are k edges far from n.

For each node n, an output vector on ∈ Rm is also defined which depends on
the state xn and label Ln. The dependence is described by a parametric function
Ow

on = Ow(xn, Ln), 1 ≤ n ≤ r. (2)

Notice that, in order to ensure that xn is correctly defined, system (1) must
have a unique solution. In general, the number and the existence of solutions
depend on F w. Here, we assume that F w is appropriately designed so that
the solution is unique. More precisely, let X and L respectively be the vectors
constructed by stacking all the states and all the labels. Then, Equations (1)
can be written as:

X = Φw,L(X) (3)
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where Φw,L consists of r instances of F w, and w is the set of parameters.
The key choice adopted in the proposed approach consists of designing F w such
that it will be a contraction mapping and Φw,L will satisfy the hypothesis of

Theorem 1, i.e. there exists 0 ≤ e < 1 such that ‖∂Φw,L
∂X (X)‖ ≤ e for any

w, L, X.
In fact, function F w and Ow will be implemented by particular models of

static neural networks. Thus, Equations (1) and (2) specify a new theoretical
model suitable for node focused applications. In fact, (1) and (2) define a method
to attach an output on to each node of a graph, i.e. a parametric function
fw(G, n) = on which operates on graphs.

The corresponding learning problem consists of adapting the parameters w
of Ow and F w so that fw approximates the data in the learning data set. In
practice, the learning problem may be implemented by the minimization of a
quadratic error function

ew =
r∑

i=1

(ti − fw(Gi, ni))2 . (4)

Finally, since the number of inputs of F w is not fixed, but depends on the
number of neighbors of each node, the implementation of F w may be difficult,
particularly when the degree of node connectivity undergoes large changes. For
this reason, it may be useful to replace Equations (1) with

xn =
∑

�∈ne[n]

Hw(xn, Ln, L(n,�), L�) (5)

The intuitive idea underlining eq. (5) consists of computing the state xn by the
summing a set of “contributions”. Each contribution is generated considering
only one node in the neighborhood of n. Definition eq. (5) is less general than
(1), but the implementation of Hw is easier since Hw has a fixed number of
parameters.

In order to implement the model formally defined by Equations (1) and (2),
the following items must be provided:

– A method to solve (1);
– A learning algorithm to adapt F w and Ow by examples from the training

data set3;
– An implementation of F w and Ow for which Φw,L is a contraction mapping.

These aspects will be considered in turn in the following subsections.

3.1 Computing the States

Theorem 1 does not only provide a sufficient condition for the existence of the
solution of equation (1), but it also suggest how to compute its fixed point. In
fact, for any initial set of states the following dynamical system
3 In other words, the parameters w are estimated from the training data set.
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xn(t) = F w(xn(t − 1), Ln, xne[n](t − 1), Lco[n], Lne[n]), (6)

where x(t) denotes the t-th iterate of x, converges exponentially fast to the
solution of system (1).

Notice that system (6) can be interpreted as the representation of a network
consists of units which compute F w and Ow. Such a network will be called an
encoding network, following a similar terminology used for the recursive neural
network model [3]. In order to build the encoding network, each node of the graph
can be replaced by a unit computing the function F w (see Figure 3). Each unit
stores the current state xn(t) of the corresponding node n, and, when activated,
it calculates the state xn(t + 1) using the labels and the states stored in its
neighborhood. The simultaneous and repeated activation of the units produces
the behavior described by system (6). In the encoding network, the output for
node n is produced by another unit which implements Ow.
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Fig. 3. A graph and its corresponding encoding network.

When F w and Ow are implemented by static neural networks, the encoding
network is a large recurrent neural network where the connections between the
neurons can be divided into internal and external connections respectively. The
internal connectivity is determined by the neural network architecture used to
implement the unit. The neural architecture which have been suggested for real-
izing this type of problems in the literature for solving a graph focused problem
include multilayer perceptrons [3, 11], cascade correlation, and self organizing
maps [5, 6]. For node focused problems, e.g., in web page classifications, as far
as we are aware, there is only one application of such a concept using a linear
model [12]. The external connectivity mimics the graph connections. Moreover,
the weights of such a recurrent neural network are shared, since the same pa-
rameters w are common to all the units.

3.2 A Learning Algorithm

Without loss of generality let us assume that the learning data set contains
one single graph. This is a general case, as when we have many graphs, it is
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possible to transform this into a single graph by grouping them into one single
non–connected graph. The learning algorithm we propose consists of two phases:

(a) the states x(t) are repeatedly updated, using Eq. (6) until they reach a stable
point at time T ;

(b) the gradient ∂ew(T )
∂w is computed and the weights w are updated according

to a gradient descent strategy.

These two phases are repeated until a given stopping criterion is reached
A similar approach, based on a stabilizing and a learning phase, was already
proposed for training a random walk process in [2]. Thus, while phase (a) moves
the system to the stable point, phase (b) adapts the weights to change the
outputs towards the desired target. It is worth noting that the gradient ∂ew(T )

∂w
depends only on the error at time T , when the system is supposed to be stable.
In fact, the output of our model depends on function Ow and on the stable
point which is determined by F w. In order to obtain the desired outputs, it is
necessary to change the fixed point along with Ow. The proposed algorithm can
be interpreted as a gradient descend whose goal consists of moving the fixed
point to a new position where the function Ow can produce the desired output
more readily. For this reason, only the error at time T is to be considered.

The Gradient Computation. The gradient could be computed using a back-
propagation through time algorithm [4]. In this case, the encoding network is
unfolded from time T back to an initial time t0. The unfolding produces a layered
network (see Figure 4). Each layer corresponds to a time instance and contains
a copy of all the units F w of the encoding network. The units of two consecutive
layers are connected following the encoding network connectivity (i.e. the graph
connectivity). The last layer corresponding to time T includes also the unit Ow

and allows to compute the output of the network. Backpropagation through time
consists of carrying out a common backpropagation on the unfolded network in
order to compute the gradient of the error at time T with respect to all the
instances of F w and Ow. Then, ∂ew(T )

∂w is obtained summing the gradients of all
instances.

However, backpropagation through time requires to store the states of every
instance of the units. When the graphs and T −t0 are large, the memory required
may be considerable4. On the other hand, in our case, a more efficient approach
is possible. Since the system has reached a stable point, we can assume that
x(t) = x(t0) for any t ≥ t0. Thus, the states of units remain constant for each
instant, and backpropagation through time can be carried out storing only x(t0).
More details on gradient computation are available in [9].

4 Internet applications, where the graph may represent a portion of the web, are a
straightforward example of cases when the amount of required storage may have a
very important role.
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Fig. 4. A graph and its encoding network to illustrate the backpropagation through
time concept.

The Learning Algorithm. The learning algorithm is summarized in Table 1.
It consists of a main procedure and two functions called Forward and Backward
respectively. The function Forward takes in input the current set of parameters
w and the current state X and iterates the system equations. The iteration is
stopped when ‖X(t + 1)−X(t)‖ is less than a given threshold εf . The function
Backward computes the gradient using a time window [T, t0] such that ‖ ∂ew(T )

∂X(t0)
−

∂ew(T )

∂X(t0−1)
‖ ≤ εb.

Table 1. The learning algorithm.

/* Main procedure */
Learn(F w, Ow,L)
initialize w, X;
X:=Forward(X, w);
repeat

∂ew
∂w :=Backward(X, w);

w:=w − λ · ∂ew
∂w ;

X:=Forward(X, w);
until the stopping criterion

is achieved;
return w;
end

/* Move to a stable point */
Forward(X, w)
X(0):=X, t = 0;
repeat

Compute X(t + 1) ;
from X(t);

t:=t + 1;
until ‖X(t+1)−X(t)‖ ≤ εf ;
return X(t + 1);

end

/* Compute the gradient */
Backward(X,w)
Assume X(t) = X for each t;
Find a window [T, t0] s.t.

‖ ∂ew(T )
∂X(t0)

− ∂ew(T )
∂X(t0−1)

‖ ≤ εb;

Compute
∂ew(T )

∂w by
backpropagation through time
on the window [T, t0];

end

The main procedure calls the functions Forward and Backward and updates
the weights until the output reaches a desired accuracy or some other stopping
criterion is achieved. In Table 1, the weights are updated according to a simple
gradient descent strategy with a fixed learning rate λ. However, other strate-
gies are also possible, e.g. based on an adaptive learning rate, as long as the
adaptive learning rate decreases faster than a constant rate. Moreover, while the
initialization of parameters w depends on the particular implementation of Fw

and Ow, in theory, X in the main procedure can be initialized to any value. In
practice, it is simplest to set this to be X = 0.
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Finally, the values εf and εb are design parameters. It can be proved that if
Φw,L is a contraction mapping, then ‖X(t+1)−X(t)‖ and ‖ ∂ew(T )

∂X(t0)
− ∂ew(T )

∂X(t0−1)
‖

converge exponentially to 0, when t and t − t0 increase, respectively. Thus, it
is possible to set εf and εb to very small values without effecting heavily the
performance of the algorithm.

3.3 Comparing Our Approach with Recursive Neural Networks
and Random Walks

Recursive neural networks are a special case of the model described in (6), where

– the input graph is directed and acyclic;
– the inputs of F w are limited to Ln and xch[n](t − 1);
– the graph should contain a node s called supersource from which all the

other nodes can be reached;
– the recursive network is the output os computed the supersource.

Note that the above constraints on the processed graphs and on the inputs
of F w exclude any sort of cyclic dependence of a state on itself. Thus, in the
recursive model, the encoding networks are feedforward networks.

This assumption simplifies the computation of the node states. In fact, the
states can be computed following a predefined direction, i.e. from the leaf nodes
to the supersource node of the graph. First, the states of the leaf nodes are
calculated, then the states of their parents are computed and so on up to the
supersource node. For the supersource node, the recursive neural network com-
putes also an output, which is returned as the result of the graph computation.

Moreover, the above assumptions allow to train recursive neural networks
by applying a common backpropagation procedure on the encoding network [3,
11]. This solution is not viable for GNNs, since the presence of cyclic dependen-
cies among the states transforms the encoding network into a dynamic system.
For this reason, it has been necessary to assume that the function Φw,L is a
contraction map and to propose a new learning algorithm. However, it must be
pointed out that the learning algorithm adopted for GNNs is an extension of the
one used for recursive neural networks and that the two algorithms behave in
the same way on acylic graphs.

On the other hand, in a random walk model, F w is a linear function. In a
simple case, the states xn associated with nodes are real values and satisfy

xn(t + 1) =
∑

i∈pa[n]

wn,ixi(t) (7)

where wn,i ∈ R and wn,i ≥ 0 hold for each n, i. The wn,i are normalized so
that

∑
i∈ch[n] wi,n = 1. In fact, Eq. (7) can represent a random walker who is

traveling on the graph. The value wn,i represents the probability that the walker,
when he/she is on node n, decides to go to node i. The state xn stands for the
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probability that the walker is on node n in the steady state. When all the xn

are stacked into a vector X, Eq. (7) becomes

X(t + 1) = WX(t) (8)

where W = {wn,i} and wn,i is as defined in Eq. (7) if i ∈ pa[n] and wn,i = 0
otherwise. It is easily verified that ‖W ‖1 = 1. Markov chain theory suggests
that if there exists t such that all the elements of the matrix W t are non–null,
then Eq. (7) is a contraction mapping [10].

Thus random walks on graphs are an instance of our model, since they im-
plement a linear version of it. The set of processed graphs include cyclic graphs,
but these graphs are usually unlabeled. Moreover, random walk theory does not
provide a learning algorithm. In our development described in this paper, we
have proposed a learning algorithm which allows the estimation of the set of
parameters from training samples. Thus, our model extends the work on ran-
dom walk models by providing the possibility of learning the parameters from
training samples.

3.4 Implementing F w and Ow

The implementation of Ow does not need to fulfill any particular constraints.
In our experiments, Ow will be simply implemented by a feedforward neural
network (a multilayer perceptron). On the other hand, F w plays a crucial role
in the proposed model, since its implementation determines the number and the
existence of the solution of Equation (1).

The key choice adopted in our approach consists of designing F w such that
Φw,L is a contraction mapping. Let δn,i,u,j denote the element of the Jacobian
∂Φw,L(X)

∂X
of Φw,L whose row corresponds to j–th component of node u and

whose column corresponds to i–th component of node n. By Theorem 1, Φw,L

is a contraction mapping provided that it is differentiable and
∣
∣
∣
∣
∣
∣

∑

n,i

δn,i,u,j

∣
∣
∣
∣
∣
∣
≤ e (9)

holds for some real number 0 ≤ e < 1. Inequality (9) can be used to design the
F w in (1) or the Hw in (5) such that Φw,L is a contraction mapping.

In this paper, two implementations of Φ,L are suggested:

(a) Hw is realized by a linear system whose parameters are determined by a
neural network; the model is such that Eq. (9) holds for any set of parameters
w.

(b) F w is realized by a common feedforward neural network: the cost function
adopted in the learning procedure includes a penalty term that keeps the
parameters w in the region where Eq. (9) is fulfilled.
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Implementation of Hw by a Linear Function. In the first implementation,
Hw is a linear function

xn = En +
∑

r∈ne[n]

W n,rxr

similar to that used in random walks. But, the state attached to the nodes
are vector of reals instead of simple reals and the parameters are not statically
defined, but they are computed by two feedforward neural networks NE and
NW . The neural network decides the parameters En ∈ Rs and W n,r ∈ Rs×s on
the basis of the labels attached to nodes n, r and the arc (r, n). More formally,
let fE : RlN → Rnr and fW : RlE → Rn2r2

be the functions implemented by
NE and NW , respectively. Then, we can define

En = fE(Ln)

W n,r = Resizes×s

(
e

s|ne[r]|fW (L(n,r))
)

where Resizes×s(·) denotes the operator that rearranges the components of a
s2 × 1 vector into a s × s matrix and |ne[r]| represents the cardinality of ne[r].

In this case, inequality (9) holds provided that the output of fW is in the
range [−1, 1], which can be achieved by using a sigmoidal activation function in
the output layer of NW . In fact, δn,i,u,j = (W n,u)i,j and, as a consequence,

∣
∣
∣
∣
∣
∣

∑

n,i

δn,i,u,j

∣
∣
∣
∣
∣
∣
≤

∑

n,i

|W n,u|i,j ≤
∑

n∈ne[u],i

e

s|ne[u]| = 1 .

Implementation of Fw by a Neural Network. Let us suppose that F w is
realized by a layered feedforward neural network with logistic sigmoid activation
functions. In this case, (9) holds only for some values of the parameters w.
In fact, δr,j,n,i is small for small values of the network parameters, but it may
become large for large values, e.g. when the hidden–to–output weights are large.
In order to ensure (9) is fulfilled, a penalty term can be added to the error
function which becomes

ew =
m∑

k=1

(tk − fw(Gk, nk))2 + β
∑

n,i

L




∑

r,j

δr,j,n,i





where β is a predefined parameter balancing the importance of the error on
patterns and the penalty term, and L(y) is (y − e)2 if |y| > e and 0, otherwise.
Note that the same reasoning can be applied also to the case when Hw instead
of F w is implemented by a layered neural network.

4 Experimental Results

In the paper, we present some preliminary results obtained using the linear
implementation of Hw. More experiments, including some obtained by directly



54 Franco Scarselli et al.

implementing Hw with a neural network, are in [9]. The linear implementation
of GNN has been verified on the subgraph recognition problem and the web page
ranking problem.

The subgraph recognition problem consists of identifying the presence of a
subgraph in a larger graph. In our experiments, we used random graphs. The
graphs have integer labels in the range [0, 10] and these labels have been added
a normal distribute noise having mean of 0 and a variance 0.25. Different di-
mensions for the graphs and the subgraphs have been evaluated in different
experiments.

Tables 2 shows the results of the experiments. Each column is related to a
different set of experiments. The notation s − g in the header of the column
defines the number of nodes s of the subgraph to be identified and the total
number of nodes g in the graphs that contain the subgraph. For any pair s − g
the experiment has been carried out 5 times with different subgraphs. In each
experiment the dataset contained 450 graphs, equally distributed between the
training dataset, the testing dataset, and a validation set.

The results are interesting. In fact, it must be pointed out that that the
classic subgraph recognition algorithms cannot evaluate situations when there
are corruptions in the graph labels. On the other hand, as may be observed in our
results, our proposed method can handle such situation quite easily. Moreover,
to verify the capability of the method in learning the graph connectivity, the
results have been compared with those achieved by a common three layered
(one hidden) neural network (FNN) which takes in as its input only the label of
a node n. It is observed that GNNs clearly outperforms this latter approach.

Table 2. The results of the subgraph recognition problem.

3 − 6 5 − 6 3 − 10 5 − 10 7 − 10 3 − 14 5 − 14 7 − 14 Average

GNN on testsetwith noise 91.62 93.05 86.41 78.70 86.94 86.71 78.56 79.81 85.22
FNNon testsetwith noise 71.67 87.22 69.39 58.17 74.16 72.86 67.34 55.93 69.59
GNN on trainsetwith noise 92.28 93.85 86.96 79.64 87.97 86.87 80.56 80.99 86.14
FNNon traintsetwith noise 70.85 87.08 69.83 57.71 74.23 73.09 67.43 55.85 69.51
GNN on testset no noise 94.22 93.03 89.95 84.88 90.24 89.75 83.49 80.11 88.21
GNN on trainset no noise 94.77 93.58 91.06 85.81 90.86 90.41 83.97 80.17 88.83
FNNon trainset no noise 73.48 88.23 69.96 66.45 78.74 71.68 65.49 58.89 71.62

In a second experiment, the goal was to simulate a web page ranking al-
gorithm. For this experiment a random graph containing 1000 nodes has been
generated. To each node, a label [a, b] has been attached where a, b are binary
values. The label represents whether the page belongs to two given topics. If the
page belongs to both topics, then, [a, b] = [1, 1]; if it belongs to only one topic,
then [a, b] = [1, 0], or [a, b] = [0, 1] and if it does not belong to either topics then
[a, b] = [0, 0]. The GNN was trained in order to produce the following output oi

oi =
{

2 ∗ PRi if a = 0, b = 1 or a = 1, b = 0
PRi otherwise

where PRi stands for the Google’s PageRank [1] of page n. Thus this experiment
simulates the situation when a user wishes to see pages which belong to one topic
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and not the other and have their page ranks raised to twice that of the PageRank
as given by method described in [1]. Such wishes are encountered often in the
construction of web portals.

The two function F w and fE were implemented by three layer neural net-
works (one hidden layer) with linear output function. For the output function
Ow, two implementations have been evaluated: a three layer neural network and
a two layer neural network. Figure 5 (a) and (b) show the output of the two
layer network and the output of the three layer network, respectively. The plots
display the desired rank (the continuous line) w.r.t. the rank computed by GNN
(the dots). The pages, sorted by the desired rank, are displayed on horizon-
tal axes, the ranks on the vertical ones. The plots show that the three layered
network achieves better results and approximate well the desired function.
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Fig. 5. The output of the model using a two layer network (a) and a three layer network
(b) to implement Ow.

5 Conclusions

In this paper, we have presented a unified approach to considering both a graph
focused approach and a node focused approach to graph structured data. We
have discussed the properties of the new neural model (GNN) and we have
further provided a learning algorithm which can estimate the parameters. The
preliminary experimental results confirms the viability of the approach.

Future research directions include a wide experimentation of GNNs, both to
validate them on real life applications and to test different implementations of
the functions F w and Ow. At the same time, a number of theoretical questions
are still open, including an analysis of the approximation capability of GNNs and
more general sufficient conditions to guarantee the existence and the uniqueness
of the solution of Eq. (1).
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