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Abstract. A lot of different features have been proposed for on-line sig-
nature verification. By using these features, researchers implicitly believe
they have high consistency as well as high discriminatory power. How-
ever, very little work has been done to measure the real consistency of
these features. In this paper, we propose a model for consistency mea-
sure. Experiments were conducted to compare a comprehensive set of
features commonly used for on-line signature verification.

1 Introduction and Motivation

Feature extraction and selection is the key for signature verification. A lot of
work has been done on this [8, 9]. Different research groups use different features
to discriminate genuine and forged signatures. The prerequisite for any feature is
high consistency. That is, the feature from genuine signatures should be close to
each other while the feature from forgeries should be far away. On-line signatures
captured by digitizing device usually contains the information of the movement
of pen (X-, Y -coordinates), pressure, altitude [8], etc. From the coordinate se-
quence, speed and acceleration can be derived. Among these information and
potential features, which of them are reliable or consistent? Some researchers
believe that the dynamic information such as the speed, acceleration or pressure
are difficult to forge, thus they are able to distinguish skilled forgeries. How-
ever, the prerequisite is that the dynamic information from the authentic person
should be consistent, otherwise false rejection will be incurred. Currently, we
are lack of a solid support that the dynamic information are reliable or not. By
using the extracted features, researchers implicitly believe they have high consis-
tency as well as high discriminatory power. However, due to lack of consistency
measure and benchmark databases, no experiment has been done to study the
consistency of features proposed by a variety of research groups. Blind feature
extraction can be avoided if there is a consistency measure model.

In this paper, we propose a consistency model and compare the consistencies
of some commonly used features in on-line signature verification.
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2 Consistency Measure

2.1 A Novel Consistency Model

Before we describe the consistency model, we need to know the basic require-
ments of on-line signature verification system.

Signature verification is a special two-category classification problem: true
or false. We say it ”special” because it is different from regular two-category
problem. Fig. 1 shows the geometric difference. In the regular case, there are
two clusters which can be discriminated by the decision boundary. The boundary
is usually an open hyper-plane, as shown in fig. 1 a). However, in the case of
signature verification, there is only one cluster, i.e., the set of genuine signatures,
while forged signatures have no clustering characteristic because they have no
reason to be close to each other. Therefore, the decision boundary must be a
closed hyper-plane.

a) b)

Fig. 1. Two different cases of two-category classification problem. a) Regular two-
category problem has two clusterings with open decision boundary. b) Signature ver-
ification is a special two-category problem with closed decision boundary around the
clustering genuine signatures.

Given few samples of genuine signatures(no more than 6 usually), it is very
challenging to determine the decision boundary (threshold) no matter what kinds
of features are used. Because of limited training samples, the consistency of fea-
ture becomes extremely important. There are many potential features to choose
[7, 4, 1] and many new features are being invented. Thus, we are facing an in-
creasing demand for a consistency model.

A simple consistency measure was defined by Lee etc [4] as:

di(a) =
|m(a, i) − m(f, i)|

√
σ2(a, i) + σ2(f, i)

, (1)

where di(a) means the consistency of feature i for subject a, m(a, i) is the mean
of feature i from genuine signatures,m(f, i) is the mean of feature i from corre-
sponding forgeries and σ2(a, i) or σ2(f, i) means the variation of feature i from
genuine or forged signatures.

While this model is appropriate for regular two-category classification, it
faces severe problems for signature verification:
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– σ2(f, i) does not make sense. As shown in fig. 2 b), signature verification
is a special two-category classification problem where the forgeries have no
reason to be close to each other.

– The mean m(a, i) can not be calculated directly. For example, if we define
the coordinate sequence itself (X , Y or [X, Y ]) as feature, it is difficult
to obtain the mean because the sequences are usually of different lengths.
Even sequences can be re-sampled [1] to be of the same length, the mean of
signature sequences actually does not mean anything.

– The calculation of distances between features are not limited to Euclidean
norm. For example, if we define the sequence [X, Y ] as feature, we should
use DTW (Dynamic Time Warping [3]) instead of Euclidean distance. There-
fore, the calculation of |m(a, i) − m(f, i)| and σ2 should be generalized to
incorporate different distance measures.

For above reasons, we need to tailor this model radically. Therefore, we define
the consistency of feature i on subject a as:

Cons(a, i) =
|MDMi(a, a) − MDMi(a, f)|
√

σ2
DMi

(a, a) + σ2
DMi

(a, f)
, (2)

where the notions are described as follows:
DMi: distance measure associated with feature i. We acknowledge that differ-

ent features may have different distance measures, e.g., Euclidean norms, DTW,
cross-correlation, etc.

MDMi(C1, C2) : the mean of the feature distances (by distance measure DMi)
between pairwise objects in class C1 and class C2. Formally,

MDMi(C1, C2) =
1

|C1||C2|
∑

c1∈C1,c2∈C2,c1 �=c2

DMi(c1, c2), (3)

where DMi(c1, c2) denotes the distance of feature i between object c1 and c2.
a: a set of genuine signatures. f : a set of corresponding forged signatures.
σ2

DMi
(a, a): The variation of the feature distances (by distance measure DMi)

within genuine signatures.
σ2

DMi
(a, f): The variation of the feature distances (by distance measure DMi)

between genuine and forged signatures.

2.2 Discussion

In the consistency model above, we calculate the mean of feature distances
instead of the feature itself because some kinds of features have meaningless
”mean” (for example, the coordinate sequence). Also, feature is usually asso-
ciated with a certain kind of distance measure. Above model takes this into
account. Therefore, the model is applicable for all kinds of features proposed for
on-line signature verification.

Note that the consistency of feature i as Cons(a, i) is for a particular subject
a. The same feature could have different consistency value on different subjects.
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Given a data set which consists of a set of subjects, we will calculate the mean
and the standard deviation of the consistency value.

3 Commonly Used Features

We subjectively choose over 20 features and compare their consistencies on the
SVC signature database[6]. We briefly discuss these features here. Details are
referred to corresponding papers.

– Coordinate sequences. X , Y , [X, Y ] are the most straightforward features.
The lengths of these features from different signatures are usually different.
Therefore, DTW is used as distance measure [3]. There exist some variants
of sequence here. Some researchers propose that the sequence be re-sampled
so that they have equal arc-length [1]. We will compare their consistency
with/without re-sampling.

– Speed sequences. Speed V , speed of X coordinate Vx and speed of Y co-
ordinate Vy can be derived from sequence [X, Y ] directly by subtracting
neighboring points. From the speed, acceleration Va can be further derived.

– Pressure, altitude, azimuth. Pressure is one of the most common dynamic
information of on-line signature. Some devices can capture additional infor-
mation, such as azimuth (the clockwise rotation of cursor about the z-axis )
and altitude( the angle upward toward the positive z-axis)[6].

– Center of Mass x(l) and y(l), Torque T (l), Curvature-ellipse s1(l) and s2(l).
The five features were defined in [1]. Center of Mass is actually the smoothed
coordinate sequence by Gaussian filter. Torque measures the area swept by
the vector of pen position. s1(l) and s2(l) measure the curvature ellipse based
on moments. The distance measure used here is cross-correlation (Pearson’s
r) weighted by the consistency of points.

– Average speed V , average positive speed on X-axis V x+, average positive
speed on Y -axis V y+ , total signing duration Ts. Lee etc[4] lists two sets of
features. These four features have the highest preference in the first set. The
distance measure is Euclidean norm.

– cos(α), sin(α), Curvature β. α is the angle between the speed vector and
the X-axis. The three features are proposed by Jain etc[7]. It also proposes
coordinate sequence difference δx and δx. Actually, δx and δx are the same
as feature # 5 and # 6 in table 1 respectively.

All above features and corresponding distance measures are summarized in table
1. We have to notice that these features are only a small portions of the proposed
features for signature. We choose them because we believe they are among the
most promising ones according to our experience.

4 Comparison of Consistency

We used the released SVC database [6] to calculate the consistencies of the fea-
tures in table 1. SVC has two sets of signatures, namely task 1 and task 2. Each
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Table 1. Commonly used features.

# Feature Dist. Measure

1 X-coordinate: X DTW

2 Y -coordinate: Y DTW

3 Coordinates: [X, Y ] DTW

4 Speed: V DTW

5 Speed X: Vx DTW

6 Speed Y : Vy DTW

7 Pressure: P DTW

8 Acceleration: Va DTW

9 Altitude: Al DTW

10 Azimuth: Zu DTW

11 Center of Mass X: x(l) Weighted r

12 Center of Mass Y : y(l) Weighted r

13 Torque: T (l) Weighted r

14 Curvature-ellipse: s1(l) Weighted r

15 Curvature-ellipse: s2(l) Weighted r

16 Average speed: V Euclidean

17 Average positive Vx: V x+ Euclidean

18 Average positive Vy: V y+ Euclidean

19 Total signing time: Ts Euclidean

20 Curvature: β DTW

21 Angle: sin(α) DTW

22 Angle: cos(α) DTW

signature is represented as a sequence of point, which contains X coordinate,
Y coordinate, time stamp and pen status (pen-up or pen-down). In task 2, ad-
ditional information like azimuth,altitude and pressure are available. There are
40 subjects in each task with 20 genuine signatures and 20 forgeries for each
subject.

To compare the consistency of different features fairly, we need to normalize
the raw signatures as well the feature distances. We normalized each signature
by the same preprocessing: 1) smooth the raw sequence by Gaussian filter; 2)
rotate if necessary [2]; 3) normalize the coordinate of each signature Sigi by:

Xi =
Xi − min(Xi)

max(Xi) − min(Xi)
, Yi =

Yi − min(Yi)
max(Yi) − min(Yi)

(4)

The feature distance must be normalized because we have different distance
measures here, such as DTW, Euclidean norm and weighted cross-correlation.
Normalization of distances is done as follows. Suppose we apply DMi to class
a (genuine signatures ) and class f (forgeries). We first calculate all pairwise
feature distances within class a by DMi. We find the maximum feature distance
(denoted as Dmax). Then, we calculate all pairwise feature distances between
class a and f . For each dist among these distances, no matter within a or between
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a and f , we normalize it by e
−dist

2∗Dmax . In this way, all distances are mapped to a
value between 0 and 1. The larger the distance, the closer the value to 1.

Same feature may have different consistency on different subjects. Thus, we
calculated the mean of consistency of each feature as well as its standard devia-
tion cross subjects.

In addition, to show the relation between feature consistency and its discrim-
inatory power in verification, we calculated the EER (Equal Error Rate) for each
feature. We randomly chose 5 genuine signatures from each subject and used the
left 35 signatures for verification. Given a testing signature, we calculated the
feature distance with all the 5 genuine signatures one by one and returned the
maximum normalized distance as similarity output (except the weighted cross-
correlation distance, where we output the minimum normalized distance). To
determine the EER, we varied the threshold from 0% to 100% and found the
point where the FRR (False Rejection Rate) equals the FAR (False Acceptance
Rate). By universal threshold, we chose the same threshold for all subjects to
calculate the total error rate. By user-dependent threshold, we chose the optimal
threshold for each subject and took the average error rate.

The results are summarized in table 2 in the increasing order of mean con-
sistency value.

From the results as shown in table 2, we have the following observations:

– Although azimuth and altitude have relatively high mean consistency, they
have high standard deviations, which means their discriminatory ability are
not stable cross subjects. The corresponding high EER confirms this.

– Some features, like curvature-ellipse s1(l) and s2(l), torques T (l), center of
mass x(l) and y(l) are not good enough for skilled forgeries, although they
are sophisticated and might be enough for random forgeries. This means,
complex features are not necessary better than simpler ones.

– Features like # 17 through # 19 are too simple to carry enough discrimina-
tory information. Thus, they have high EERs. They could be used to prune
random forgeries but non-reliable for accepting genuine ones.

– EER has negative relation with the level of consistency, although the EERs
do not strictly increase with the consistency decreasing. The variation of
consistency also acts to affect the verification performance. This confirms the
consistency of feature is directly related to its performance on verification.

Here we have to emphasize that all the EERs in table 2 are high because
we used only one feature each time for verification. How to combine these fea-
tures optimally is still an open problem. We also have to mention that further
experiments on real and larger signature databases are necessary to claim the
consistency of any given feature.

There is a belief in on-signature verification community that the curve of
the signature should be re-sampled with uniform equal arc-length [7, 1, 2]. Is
this necessarily true? We conducted experiments to answer this question. We
re-sampled all the signature to be of length N and calculated the consistencies
of features and corresponding EERs. The results are summarized in table 3 with
N = 200 (we varied N and found the results had no much difference). Note that
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Table 2. Consistencies of features (mean and standard deviation) and EERs (by uni-
versal threshold and user-dependent threshold).

Feature Consistency EER
Mean Std. Univ. T. User. T.

Zu 1.3789 3.2333 35.06% 26.63%

Vy 1.3255 0.3231 22.06% 11.38%

Vx 1.2644 0.3659 22.65% 16.81%

V 1.2374 0.4143 23.44% 17.63%

Ts 1.2025 0.8128 30.31% 28.18%

Al 1.1829 4.578 37.63% 29.06%

cos(a) 1.1199 0.2845 26.72% 16.19%

[X, Y ] 1.1061 0.1795 22.91% 16.83%

sin(a) 1.0997 0.2491 29.56% 20.63%

Va 1.0966 0.3199 29.29% 22.50%

P 1.0647 0.375 36.86% 25.56%

β 0.985 0.1767 28.90% 20.81%

Y 0.9252 0.1921 25.86% 18.68%

X 0.7784 0.1313 29.59% 25.13%

y(l) 0.637 0.1397 28.81% 19.19%

x(l) 0.6023 0.122 29.59% 23.00%

T (l) 0.5291 0.1504 33.63% 25.68%

V 0.4814 0.1761 34.50% 31.94%

V y+ 0.4587 0.1662 36.69% 33.88%

V x+ 0.3983 0.1717 36.69% 34.00%

s2(l) 0.3158 0.0295 43.86% 42.19%

s1(l) 0.3158 0.0292 43.96% 42.13%

Table 3. Consistencies of features and EER with uniform arc-length re-sampling.

Feature Consistency EER
Mean Std. Univ. T. User. T.

Vy 0.8841 0.2425 32.36% 20.81%

Vx 0.8714 0.3025 30.44% 21.00%

V 1.1452 0.3066 27.94% 17.63%

cos(a) 1.082 0.2352 29.41% 20.25%

[X, Y ] 1.0546 0.5839 26.63% 20.94%

sin(a) 0.8093 0.2661 32.56% 23.69%

β 0.8941 0.2360 32.19% 24.75%

Y 0.8683 0.2667 29.94% 21.56%

X 0.7893 0.4407 34.03% 29.63 %

some features in table 1 have no sense or difference with the signatures being
re-sampled. Compared the consistencies and EERs with/without re-sampling,
we can see that re-sampling does not necessarily improve performance. On the
contrary, the performance is damaged to some degree.
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5 Conclusion Remarks

A novel consistency model tailored for on-line signature verification is proposed
in this paper. The consistency of feature is directly related to the feature’s per-
formance on signature verification. We conducted experiments to calculate the
consistencies of a set of features. The results summarized in table 2 show that
some features such as speed, coordinate sequence, angle α have relatively high
consistency, while some others like azimuth, altitude, curvature-ellipse s1(l) and
s1(l) are non-reliable. Also, we found that the re-sampling with uniform arc-
length does not necessarily increase performance.
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