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Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. The direct computation of natural image block statistics is
unfeasible due to the huge domain space. In this paper we shall propose
a procedure to collect block statistics on compressed versions of natural
4 × 4 patches. If the reconstructed blocks are close enough to the orig-
inal ones, these statistics can clearly be quite representative of the true
natural patch statistics. We shall work with a fractal image compression–
inspired codebook scheme, in which we will compute for each block B
its contrast σ, brightness µ and a normalized codebook approximation
DB of (B − µ)/σ. Entropy and mutual information estimates suggest
a first order approximation p(B) � p(DB)p(µ)p(σ) of the probabibility
p(B) of a given natural block, while a more precise approximation can
be written as p(B) � p(DB)p(µ)p(σ)Φ(||∇B||). We shall also study the
structure of p(σ) and p(D), the more relevant probability components.
The first one presents an exponential behavior for non flat patches, while
p(D) behaves uniformly with respecto to volume in patch space.

1 Introduction

Natural images, that is, those derived from natural scenes, have a distinctive
nature that makes them far from random. In particular, they convey “informa-
tion” that allows their processing by the human visual system. In fact, natural
image information is not distributed uniformly over the image: there are parts
that are most relevant to the human visual system, while other are far less rele-
vant. It is therefore clear that the undestanding of their statistical behavior it is
extremely important, not only for basic human visual processing but also for a
number of everyday visual information processing tasks such as for instance effi-
cient static and dynamic image compression. A large effort has been undertaken
in that direction [7, 2, 9]; a thorough and recent survey is in [8]. In any case, it
can be quite easily seen that direct statitistics computation for 4 × 4 natural
image blocks is not currently possible. In fact, state of the art lossless image
compression (see e.g. [10]) can achieve for 8 bit gray level images compression
rates down to 2.5 bits per pixel. Thus, a block of size 4 × 4 would requires in
average about 16 × 2.5 = 40 bits. Assuming that this representation is close to
the informational limit of the lossless representation of the image, it follows that
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Fig. 1. Statistics computed from other codebooks are similar, provided the source
image is “rich” enough, as exemplified here.

natural block statistics require at least 240 4×4 blocks or, in other words, about
240−16 � 16 × 106 natural 1024 × 1024 images. Direct statistics computation is
clearly not possible today because of, among other things, the lack of so many
machine readable raw images.

We shall work here with the equivalent representation (B̃, σ, µ) of a natural
block B, with σ, µ the standard deviation and mean of B and B̃ its normaliza-
tion B̃ = (B−µ)/σ. Direct statistics are clearly possible for the 1–dimensional σ
and µ, while this is not so for B̃. To estimate them we shall approximate natural
patches B̃ by normalized blocks DB extracted from a given codebook. Since an
approximation B̃ � DB immediately translates into the affine approximation
B � σDB +µ, it is natural to try to derive D through fractal image compression
(FIC) techniques [1]. If a good reconstruction quality is obtained, the (DB, σ, µ)
statistics should provide meaningful approximations to those of (B̃, σ, µ). This
will be done in section 2, where we shall introduce a concrete FIC codebook,
namely, 4 × 4 domains extracted from the well known Lena image, and shall
use it to approximate about 280 million natural 4 × 4 patches extracted from
the well known Van Hateren database [2]. Although the concrete codebook used
certainly influences the resulting statistics, we have obtained similar results us-
ing codebooks derived from other images, provided they are “rich” enough. This
is the case, for instance, of figure 1, derived from the Van Hateren database.
That section also describes the approximating technique used to collect the raw
frequency data for the approximations B � (DB, σ, µ), which are analyzed in
section 3. The main results of that section are, first, several entropy and mutual
information estimates for the joint (DB , σ, µ) distribution and the marginals of
DB, σ and µ. These estimates suggest as a first approximation that the marginals
may be taken to be independent, that is, that p(DB, σ, µ) � p(DB)p(σ)p(µ), de-
composition that still leaves about 1.5 bits of mutual information between DB

and (σ, µ) to be explained. To do so we shall refine the previous first order ap-
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proximation to a second one of the form p(DB, σ, µ) � p(DB)p(σ)p(µ)Φ(||∇B||).
The structure of the p(DB), p(σ) and p(µ) marginals is dealt with in section 3.
While p(µ) does not carry significant information, we shall see that p(σ) has an
exponential structure and that p(DB) follows a nearly uniform behavior with
respect to volume in image space. A final section contains a summary of the
paper and pointers to further work.

2 Methods

As the natural patch source, we shall work with 4300 8 bit gray level images of
size 1540 × 1024 from the Van Hateren database. We shall restrict ourselves to
their 1024× 1024 squared centers and take out flat blocks, that is, those B with
σ ≤ 3 (about 20% of all patches). As mentioned above, we shall approximate a
normalized natural patch B̃ = B−µ

σ by another normalized domain DB taken
from a codebook derived from a 256 × 256 version of the well known Lena
image as follows: we will first extract all its 4 × 4 (overlapping) blocks. This
gives (256 − 4 + 1)2 � 216 codebook domains, that become 220 after adding for
each block its 8 isometries and its negative (recall that we are reconstructing B
using positive σB contrast factors). Again, we will exclude flat domains, about
25% of the initial Lena domains.

Thus, we will not estimate the direct distribution p(B) but instead that
of the B approximation p(DB, σB , µB). To minimize the distortion that this
approximation is bound to introduce, we shall take DB as the codebook domain
for which

dist(B, D) = ||B − σBD − µB||∞ = sup |Bij − σBDij − µB| (1)

verifies dist(B, D) ≤ dM , taking in what follows dM = 8. Reconstructing a full
image I = {Bs} by its patches’ approximations Î = {DB

s }, our choice of dM

should ensure that ||I − Î||2 ≤ 8 and the PSNR of the reconstruction Î verifies
PSNR(Î) = 20 log10(

255
||I−Î||2 ) ≥ 20 log10(

255
8 ) � 30. We shall discard those B

for which a matching domain cannot be found. They are about a 1 per 1000 of
all non flat domains, which results in a final number of about 232× 106 � 227.79

disjoint 4 × 4 patches.
Finding matching domains requires to perform at some point the costly

full block comparisons in (1), that can make FIC very time consuming. To
speed things up, we shall precede full block comparisons with a hash–like pre–
comparison. We define a hash function (see [3] for further details)

h(D) =
H∑

h=1

(⌊
Dihjh

λ

⌋
%C +

C

2

)
Ch−1 =

H∑

h=1

bhCh−1. (2)

with Dihjh
, 1 ≤ h ≤ H , adequately chosen points in D, and H , C and λ appro-

priately chosen parameters. In what follows we shall take the four corner pixels
and an extra middle pixel and thus H = 5; as the base C we shall take C = 16.
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Fig. 2. Large sample behavior of the mutual information I(σ||µ) (left) and of the total
entropy H(i, j, s, σ, µ) (right) estimates. While the left picture saturates, this is not the
case for the H(i, j, s, σ, µ) estimate.

The choice of λ should ensure that Dihjh
is distributed more or less uniformly on

the interval [−λC
2 , λC

2 ], and, thus, that (2) defines a uniform base C expansion.
A good choice for this would be to take λ in the interval 0.5–1, but to streamline
our subsequent discussions, we shall take λ = 2. Once the values h(D) have been
computed for all codebook domains, those with the same value are stored in the
same linked lists over a hash pointer table. Full block comparisons for a natural
block B are performed only over the domains in the linked lists whose h index
is contained in the B dependent set H(B) = {hδ(B)}, where

hδ(B) =
H∑

h=1

(⌊
Bihjh

− µB

λσB
+ δh

⌋
%C +

C

2

)
Ch−1 =

H∑

h=1

rδ
hCh−1, (3)

with the displacement vector δ = (δ1, . . . , δH)t verifying |δh| ≤ 1. It is not
difficult to show that this searching procedure will provide the optimal matching
domain DB . Our coding of a block B will then be

T (B) = (i, j, s, σ, µ)

where (i, j) indicates the position in the Lena image of the left upper corner
of the matching domain, and s is an index for the isometry and negative used
(notice that the dilations in (1) are positive).

In order to obtain the statistics described in the next section, we shall com-
pute first basic frequency value sets Pi over 9 image batches. All of them contain
registers of the form [i, j, s, σ, µ, c], with c counting the number of patches in the
file with σ, µ statistics and a matching i, j, s domain; they are sorted in lexico-
graphic order. We then perform a first merge over 9 of these Pi sets to arrive to
larger value sets Qj and then a second merge over 9 of the Qj sets to arrive to
6 large files Sk of statistical values, 5 of them corresponding to 729 = 93 image
batches and a smaller sixth one for the last 650 images. A final merge of these
6 files will give the statistics described in the next section.
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Table 1. Different entropy measures (in bits) of image statistics (first column) and
limit estimates for them.

Quantity Value Limit estimates

N 231511046 —
log2 N 27.7865
H(i, j, s, σ, µ) 26.7141 29.87
H(i, j, s) 17.8156 17.82
H(σ, µ) 10.4627 10.46
I(i, j, s||σ, µ) 1.5642 0.474
I(σ||µ) 0.1698 0.115
I/H(i, j, s, σ, µ) 5.86 % 1.70 %
I(σ, µ)/H(σ, µ) 1.62 % 1.10 %

3 Entropy and Mutual Information Estimates

It is well known that the accuracy of any discrete probability entropy estimate
depends on its sample regime, that is, the relationship between the sample num-
ber N and the number M of non–empty bins, i.e., of non–zero probabilities. In
our case two very different regimes are to be considered. In the first one, we shall
have N � M ; this is the case for the joint (σ, µ) distribution and to a smaller
extent for the (i, j, s) distribution. In this regime [6] we should expect for large
N that the entropy and mutual information estimates closely approach satura-
tion limit points that we can take as the true entropy and mutual information
values. Figure 2, left, depicts this situation for the mutual information I(σ||µ).
It has been computed for the full sample size range and shows a extremely fast
drop for sample sizes below 106 followed by a nearly horizontal behavior after-
wards. This can be interpreted as showing the sample information ÎN estimates
to saturate at a limiting value I = 0.17 which we can take as the actual value
of I(σ||µ). On the other hand, the right picture shows a quite different situa-
tion for the joint entropy H(i, j, s, σ, µ). Clearly a saturation point has not been
achieved, which shows that we are still far from an N � M regime. Notice that
while we have log N � 28 for the full database sample, the full sample estimate
for ĤN (i, j, s, σ, µ) is 26.7, which is a lower bound for log M . In other words
log N/M ≤ 1.3, that is, we are in the N � M regime. A similar situation holds
for I(i, j, s||σ, µ).

Table 3 collects these empirical entropy and mutual information estimates
and also some estimates of possible limit values derived from functional approx-
imations to the empirical data. In most cases they are close to the empirical
estimates, while this is not the case for H(i, j, s, σ, µ) and I(i, j, s||σ, µ). We
shall take these values as a starting point for our discussion. It can be seen from
this table that the mutual information between the σ and µ is very small, about
0.17 bits, less than 2% of the joint entropy; therefore we can assume that σ and
µ are independent. On the other hand, the mutual information I(i, j, s||σ, µ) is
about 1.56, less than 10% of the joint entropy. Therefore, this suggests the first
order approximation
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Fig. 3. Left: conditional expectation Φ(||∇B||) in (6) as a function of ||∇||. For lower
values of ||∇||, that are the predominant in the distribution, no correction is possible.
For larger ||∇|| the approximation results to be approximately exponential. Right:
relative frequencies of σ in a logarithmic scale. The linear central behavior suggests an
exponential distribution.

p(B) = p(B̃, σB , µB) � p(iB, jB, sB, σB, µB) � p(iB, jB, sB)p(σB)p(µB), (4)

which nonetheless leaves more than one mutual information bit to be explained.
To do so, we shall study what we may call the divergence, that is, the average

d(i, j) = Es,σ,µ

[
p(i, j, s, σ, µ)

p(i, j, s)p(σ)p(µ)
,

]

over the joint and (i, j, s) and σ and µ distributions. Values of d different from
1 indicate deviations from the independence assumption and projecting them
back over the Lena image suggests that image borders are the main source of
the divergence. Thus any correction to (4) should be significantly different from 1
over edge blocks. Other natural assumptions are that it be isotropic, translation
invariant and not dependent on the block’s absolute brightness, but only on the
difference B−µ. Moreover it is natural to look for a lowest order approximation.
All this suggests to refine (4) to

p(B) � p(DB)p(µB)p(σB)Φ(||∇B||). (5)

In order to find a reasonable Φ we have compared the conditional average

Φ(||∇B||) = E||∇B||

[
log2

p(i, j, s, σ, µ)
(p(i, j, s)p(σ)p(µ)

]
(6)

with E||∇B|| denoting the conditional expectation with respect to ||∇B||. This is
depicted in figure 3, left, which shows that while for the lower ||∇B|| patches, the
most predominant ones in natural images, no correction appears to be possible,
Φ(||∇B||) can be quite well linearly approximated for the right side high ||∇B||
values. In turn, this suggests that a natural approximation for Φ(s) is

Φ(s) = e−0.923+0.0337s, s ≥ 25
= 0, 0 < s < 25
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with the constant 0.923 being a normalization value so that the second order cor-
rection is actually a probability. A natural interpretation of the positive constant
0.0337 in Φ is to see it as a high–contrast patch distribution correction, a high
information natural image component, as shown for instance in [4]. To check the
impact of this second correction, we have re–computed now the mutual infor-
mation between the experimentally obtained distribution and the above second
order corrected distribution, which turns out to be 0.621 bits, that is, about 1
bit less than the previous estimate. Therefore, just 2.3% of the total information
is not covered now by the second approximation. In any case, further alterna-
tives for the correction have to be studied. For instance, there are indications
that better edge detectors than simple gradient approximations could give better
results.

4 Structure of the p(i, j, s), p(σ) and p(µ) Probabilities

The µ distribution depends on the camera’s calibration and can be easily ma-
nipulated through, say, histogram equalization. It is thus largely irrelevant. The
histogram of the σ distribution is depicted in figure 3, right, in vertical logarith-
mic scale. The figure shows a central linear behavior, suggesting an exponential
distribution, with changes at the boundaries. The drop at around 100 is due to
the limited range of brightness levels, with a theoretical maximum below 128
for 256 gray levels. Although seemingly hinting at some underlying structure,
the cusp–like peak at 0 is mostly due to the layered structure of natural images,
that produces many near flat, small deviation blocks. Anyway, the σ distribution
makes clear that σ carries significant structural information. One way to visual-
ize this is to project for each domain D with coordinates i, j in the Lena image
the corresponding value of − log p(σ). When done, it shows a clear correlation
between edges and large − log p(σ) values that makes clearer the significace of
the σ component.

It is more complicated to visualize the structure of p(i, j, s). A possibility is
to fix our attention in the (i, j) distribution, and to consider the corresponding
Lena domains as bins were the sample patches fall. Defining N(m) as the number
of such bins getting m sample patches, it can be seen that log N(m) shows a
near parabolic structure, which is still more clear in figure 4, left, where N(m)
has been corrected taking into account the volume surrounding each codebook
domain. To perform this correction, we may a priori assume that the hash linked
lists cover regions with essentially the same volume, and also that all domains of
a given list have the same volume. This implies that the a priori probability of
a domain D is thus proportional to ν(h(D)), with ν(h) the number of codebook
domains D′ such that h(D′) = h. We then correct the direct counting estimate
m′ of the number of patches a certain domain D gets to m = m′ × ν(h(D)).
The corrected N(m) values are depicted in figure 4, left. As it can be seen,
the parabolic fitting is quite good for the higher patch count right part, which
suggests that there is a volume uniform distribution of natural patches between
codebook domains, that is, that the probability of a codebook region R receiving
a patch is proportional to its volume V (R).
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Fig. 4. Volume–corrected (left) values of log N(m), with N(m) the relative number
of domains gettin m natural blocks, that suggest a volume–uniform distribution of all
normalized natural patches among codebook domains. This is not true, however, for
high contrast patches: the right image shows a markedly higher proportion for them
among high count domains.

We have also computed the distribution over m of the patches’ average σ
values, which shows that the left area corresponds mostly to low σ patches, with
small denominators in (3) and, hence, larger hash values, that may cause them
to be assigned to wrong matching domains. This would have a little effect in
domains with a large block count, as they would lose about as many blocks as
they gain, but a bigger one in domains getting fewer blocks. In any case, the
natural interpretation of figure 4 is to assume a volume–uniform distribution
for the (i, j) domain statistics, as the near gaussian behavior of N(m) is easiest
explained as a large sample aproximation of a binomial distribution. Apparently
this may contradict recent results in [4], that show a marked structure of high
contrast natural 3 × 3 blocks. However, notice that figure 4, right, depicting
the proportion of the high-contrast codebook domains getting a (normalized)
number m of patches, has a very sharp rise at the high patch count area. In
other words, the high contrast blocks studied in [4] have an statistical behavior
of their own, certainly not following the uniform behavior just described.

5 Summary and Future Directions

In this article we have shown how a representation B � (DB, σ, µ) of natural
image 4 × 4 blocks B, with σ, µ the block’s variance an mean and DB a code-
book approximation to the normalization of B, can be used to obtain significant
natural image statistics. In fact, we have shown that these blocks’ probabilities
can be represented as a product of nearly independent factors. The analysis of
these factors allows us to conclude that at least in the scale investigated (about
one minute of angle), the information is essentially carried by a block’s variance,
that roughly correlates with the block’s edges. This is in accordance with the
well known Marr [5] hypothesis that natural image information is extracted from
biological systems using its most singular points, e.g. its edges. However, it may



460 Kostadin Koroutchev and José R. Dorronsoro

be of some interest to point out that, here, this conclusion is drawn without any
regard to the receiving system, but just by using information theoretical consid-
erations; this may suggest that biological systems have adapted themselves to
extract the part of a natural image most relevant in terms of information theory.
On the other hand, the above results may have applications in, for instance,
fast search engines in image databases, or in transmission of moderate quality
images over low bit rate, noisy channels. All these matters are currently being
researched.
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