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Abstract. This paper describes a method for curvature dependent skele-
tonisation in grey-scale images. We commence from a magnetostatic anal-
ogy, where the tangential edge flow is intepretted as a current. A vector
potential is constructed by integrating the current weighted by inverse
distance over the image plane. The skeleton corresponds to the location
of valley lines in the vector potential. To damp noise effects we damp the
current with an exponential function of the local curvature. In addition,
we describe a number of postprocessing steps that can be used to im-
prove the quality of the detected skeletons. In the end, we compare the
effects of two alternative ways for noise damping.

1 Introduction

Skeletal abstractions have been used to great effect in the representation and
recognition of both 2D and 3D shapes. Some of the earliest work was performed
by Blum [2], who showed how the skeleton could be used for the morphologi-
cal analysis of biological forms. Most of the existing work of skeletonisation has
focused on binary valued objects [1, 7–9, 12]. Here a number of methods have
been investigated including the medial axis transform [1], the chordal axis trans-
form [7], and the grassfire transform [2], More recent work has focused on the
analysis of the skeleton as the singularities in the eikonal equation for inward
boundary motion [8]. An analysis of this system using the Hamilton-Jacobi equa-
tions of classical mechanics has shown how the skeleton can be detected using the
divergence of the distance map for the object boundary [9]. Recently, Torsello
and Hancock [12] have shown how the Hamilton-Jacobi skeleton can be improved
by modifying the eikonal equation to take into account curvature effects.

In addition there has been a limited effort directed at the analysis of grey-
scale objects. For instance, Tari, Shah and Pien [10] have proposed a linear
diffusion equation to smooth out noise and extract skeletons directly from the
grey scale images. Tek et al [11] have shown that an orientation sensitive distance
propagation function can be used to extract symmetries from fragmented con-
tours by labelling skeletal points according to whether or not they represent the
collision of consistently oriented boundary fronts. Cross and Hancock [3] have
appealed to a magnetostatic analogy in which the edge tangent flow is regarded
as a current density on the image plane. The differential structure of the result-
ing vector potential can be used to characterise symmetry lines, boundary-edges
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and corners [5]. By sampling the vector potential at various heights above the
image plane, a scale-space representation is induced. One of the shortcomings
with this method is that like the binary skeleton, there is no way of moderating
the effects of high curvature effects, other than by smoothing. This can prove
time consuming and has the effect of removing genuine boundary structure.

The aim in this paper is to return to the magnetostatic analogy, and to incor-
porate curvature dependent damping of the current, i.e. the edge tangent flow.
This has the effect of controlling boundary noise and improving the shapeliness
of the skeleton. To improve the postprocessing of the vector potential, we apply
hysteresis linking to the candidate skeleton points. In the end, we demonstrate
how can we control the degree of smoothing of high curvature boundary features.

2 Image Representation Using Vector Potential

We commence by convolving the raw image I with a Gaussian kernel of width
σ. The kernel takes the following form

Gσ(x, y) =
1

2πσ2
exp

[
−x2 + y2

2σ2

]
(1)

With the filtered image to hand, the Canny edge map is recovered by computing
the gradient

E = ∇Gσ ∗ I (2)

In order to compute a vector field representation of the edge-map, we will need
to introduce an auxiliary z dimension to the original x − y co-ordinate system
of the plane image. In this augmented co-ordinate system, the components of
the edge-map are confined to the image plane. In other words, the edge-vector
at the point (x, y, 0) on the input image plane is given by

E(x, y, 0) =




∂Gσ∗I(x,y)
∂x

∂Gσ∗I(x,y)
∂y

0


 (3)

For an ideal step-edge, the resulting image gradient will be directed along the
boundary normal. In order to pursue our magneto-static analogy we would like
to interpret the raw edge responses as elementary currents which flow around
the boundaries and give rise to a vector potential. In other words, we would like
to organise the elementary currents so that they are tangential to the boundaries
of physical objects. Accordingly, we re-direct the edge-vectors to that they are
tangential to the original planar shape by computing the cross-product with the
normal to the image plane ẑ = (0, 0, 1)T . The elementary current-vector at the
point (x, y, 0) on the input image plane is defined to be

j(x, y, 0) = ẑ ∧∇Gσ ∗ I(x, y) (4)

The key idea underlying the image representation is to characterise edges and
symmetry lines using a vector potential. Edges corresponded to locations where
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the elementary current re-enforce one-another. In other words, the boundaries
are identified as local maxima of the vector potential. Symmetry points are
those at which there is cancellation between diametrically opposed elementary
currents. Axes of symmetry are lines of local minimum in the vector potential.
At the level of fine detail, intensity ridges or ravines (lines) give rise to local
symmetry axes.

According to magneto-statics, the vector-potential associated with a field
of elementary currents is found by integrating over volume and weighting the
contributing currents according to inverse distance. In other words, the vector
potential at the point r = (x, y, z)T in the augmented space in which the original
image plane is embedded is

A(x, y, z) = µ

∫
V ′

j(x′, y′, z′)
|r − r′| dV ′ (5)

where r′ = (x′, y′, z′)T and µ is the permeability constant which we set equal to
unity. Since the contributing currents are distributed only on the image plane,
the volume integral reduces to an area integral over the image plane. As a result,
the components of the vector potential are as follows

A(x, y, z) =



− ∫ ∫ ∂Gσ∗I(x′,y′)

∂y′
1√

(x−x′)2+(y−y′)2+z2
dx′dy′

∫ ∫ ∂Gσ∗I(x′,y′)
∂x′

1√
(x−x′)2+(y−y′)2+z2

dx′dy′

0


 (6)

The structure of the vector-potential deserves further comment. In the first
instance, the components are confined to the x − y plane for all values of the
auxiliary co-ordinate z. However, as we move away from the image plane the
role of this auxiliary dimension is to average the generating currents over an
increasingly large area of the original image plane. In other words, if we sample
the vector-potential for various x − y planes at increasing height above the im-
age plane, we induce a scale-space representation. We exploit this property to
produce a fine-to-coarse image representation as we sample the vector potential
at increasing heights above the physical image plane.

3 Curvature Estimation

In this section we consider how to incorporate curvature dependent smoothing
into the vector potential to control the effects of high curvature boundary noise.
To measure the curvature we use the method developed by Harris [4] which is
itself an extension of Moravec’s [6] corner detector. We commence by approxi-
mating the Hessian matrix H = ∇∇T I by the matrix E = (∇I)(∇I)T , i.e.

E =
[

I2
x IxIy

IxIy I2
y

]
(7)

where Ix and Iy are the first-derivatives of the image I in the x and y direc-
tions. Suppose that α and β are the eigenvalues of the symmetric matrix E. The
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eigenvalues are proportional to the principal curvatures of the image intensity
function, and the product of eigenvalues αβ is hence proportional to the Gaus-
sian curvature, while the sum of eigenvalues α + β is proportional to the mean
curvature. According to Harris, the curvature response is the weighted sum of
mean and Gaussian curvatures R = αβ−k(α+β)2. The quantity R can be used
to characterise image features using the following tests

R > 0 detected corners
R < 0 detected edges
R ≈ 0 flat area

We use the curvature measure to damp the current density. We adopt a model
in which the effect of the current decays exponentially with the curvature of the
image. The modified current density is

j(x, y, 0) =
[
ẑ ∧∇Gσ ∗ I(x, y)

]
e−K·Rx,y

where K is a constant. Hence, the contribution from straight boundary segments
is enhanced and the contributions from corners or places where the edge direction
changes rapidly are suppressed.

By varying the constant K, we can control the degree of smoothing of high
curvature boundary features. When K equals zero , then the original current
density is recovered. When K is increased, the amount of curvature suppression
is increased. As we will demonstrate later, the method of smoothing effect of
boundary noise does not blur away genuine skeleton structures.

With the current density to hand, the vector potential is computed by per-
forming the volume integration in Equation 6.

4 Skeletonisation and Noise Elimination

According to Cross and Hancock’s [3] representation of image structure, sym-
metry lines follow the local minima of the vector potential and edge contours
follow the local maxima. When viewed from the perspective of the differential
structure of the vector potential, symmetry lines are locations where the com-
ponent of the curl in the image plane vanish, i.e. ẑ ∧ ∇ ∧ A(x, y, z) = 0; edges
are locations where the transverse component of the divergence vanishes, i.e.
∇ · (ẑ ∧ A(x, y, z)) = 0. The main problem with this method for feature local-
isation is that it is subject to noise. In their work, Cross and Hancock fitted a
prism surface to localise symmetry lines. Here we adopt a more sophisticated
approach.

We commence by applying hysteresis linking to the edge (ridge) and symme-
try (valley) lines in the vector potential to improve connectivity. For the edge
(ridge) lines we perform connected components analysis. We dismember the web
of ridge and valley lines at the locations of T-junctions. We then note the where-
abouts of closed edge (ridge) lines. We remove those symmetry (valley) lines
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that fall outside the closed edge contours, and retain only those that remain in
the interior.

We illustrate the steps of our algorithm. In Figure 1(a) we show the raw
image used in our study. Figures 1(b) and 1(c) show the principal curvatures.
The maximum curvature is large along the edge contours of the image while the
minimum curvature is large only at the locations of corners and noise. Figure 1(d)
shows the magnitude |j| of the damped current density. White points correspond
to locations where there is strongest damping, while the darker points correspond
to strong current density. In Figure 1(e) we show the magnitude of the vector
potential. Turning our attention to the postprocessing of the vector potential,
the detected ridge and symmetry lines are shown in Figure 1(f). Figure 1(g)
shows the result of applying hysteresis linking to the symmetry (valley) lines.
After connected components analysis is performed, and the external symmetry
lines have been removed then the resulting skeleton is shown in Figure 1(h). If
the skeleton is dismembered at T-junctions, and branches with weal response
are removed the result shown in Figure 1(i) is obtained. Finally, we fit straight
lines to the detected symmetry lines and merge lines that are nearly parallel and
close to each other, to obtain the result shown in Figure 1(j).

5 Experiment

In this section, we provide some experimental evaluation of our noise-damped
vector potential representation. The experimental work is divided into two parts.
We commence with some examples on synthetic images to illustrate the effect
of K in damping the noises compared with the similar effect from increasing
height. Next we furnish some real-world examples.

On the first row of Figure 2, we show three synthetic images with small spikes
on the boundary and with a grey scale gradient on the interior. From the second
row, we show in turn the magnitude of the vector potential displayed as a surface
plot D, and, the correspondent detected ridges and ravines in black and white.
For the first three rows of plots of vector potential, we increase the parameter K
from 0 to 1, and then to 1.5. As we increase K, the effect is to damp-out noise
while retaining the detail of the skeleton. As explained earlier, we can endow
our image representation with a scale-space dimension by sampling the vector
potential at increasing heights above the image plane. This is shown on the last
two rows of vector potential plot by increasing the sampling height as we descend
the columns. The effect of increasing the sampling height is also to smooth away
noise, but this is as the expense of detail in the detected skeleton.

In Figure 3, we show some real-world images. There are four sets of images,
grouped vertically for the first three with another one left at the bottom. For
the vertical groups, the top panel shows the original image, the second panel
shows the initial output, the third panel and the bottom panel show the output
smoothed by increasing K and height respectively. While for the last group, the
order is from top to bottom and from left to right.
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(a) Original image (b) First curvature matrix

(c) Second curvature matrix (d) Damped response from R
function

(e) Vector potential magnitude (f) Ridges and ravines

(g) Symmetry lines after hys-
teresis

(h) Skeleton lines

(i) Segmented skeleton lines (j) Skeleton in straight lines

Fig. 1. Skeletonisation and noise elimination
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Fig. 2. Synthetic images with increasing K and height
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Height = 1      K = 0

Height = 1      K = 0

Height = 1      K = 0

Height = 1      K = 4

Height = 1      K = 3

Height = 1      K = 5

Height = 3      K = 0

Height = 1.5      K = 0

Height = 3      K = 0

Height = 1      K = 0

Height = 1      K = 5 Height = 2      K = 0

Fig. 3. Experimental results for real world objects



Grey Scale Skeletonisation with Curvature Sensitive Noise Damping 469

The main feature to note from these examples is that we can damp the noise
by increasing parameter K as well as by increasing the height, but curvature
damping outperforms height sampling in the following ways. First, the visual
appearance of the results is more pleasing. Second, we preserve local curvature
information. Third, as is the case with the synthetic images, when we increase
the height, some useful ridges and ravines, especially ridges, begin to vanish
rapidly as well as the noise.

6 Conclusion

In this paper, we incorporate curvature effects into the computation of grey-
scale skeletons. The method builds on the magnetostatic analogy of Cross and
Hancock, and employs a curvature dependent current damping. In addition, we
have described a number of postprocessing steps that can be used to improve the
quality of the detected skeletons. The advantages of the method are improved
noise resilience of the detected skeleton, and better skeleton connectivity. In the
end, we illustrate how to control high boundary noise by varying constant K
rather than by increasing height. This results in good noise control and does not
blur the details of the skeleton.
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