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Abstract. Statistical analysis of spatially uniform signal contexts allows Dis-
crete Universal Denoiser (DUDE) to effectively correct signal errors caused by a
discrete symmetric memoryless transmission channel. The analysis sets no lim-
its on a probability signal model apart from stationarity and ergodicity. Statistics
of signal contexts are used first to learn the probability of errors and then to de-
tect and correct the errors. Therefore a proper choice of context is an essential
prerequisite to the practical use of DUDE. We propose to use the maximum like-
lihood estimate of context assuming the signals are modelled with a nonparamet-
ric generic Markov–Gibbs random chain or field. The model adds to stationarity
and ergodicity only one more condition, namely, pairwise dependences between
each signal and its context. Experiments with noisy binary images confirm a fea-
sibility of such adaptive context, show some advantages of DUDE over more
conventional median filtering, and relate the choice of a proper context size to the
maximum entropy of the context statistics used for image denoising.

1 Introduction

Although denoising is one of the most extensively studied areas of signal and image
processing, the variety of models and techniques involved is permanently growing (see,
e.g., [1–3, 5] to cite a few). Discrete Universal Denoiser (DUDE) proposed recently
in [6] recovers an original 1D sequence or 2D array of signals by analysing signal
contexts in a noisy signal set corrupted by a memoryless symmetric transmission chan-
nel. In spite of simplicity, such signal model is of interest in many important practical
applications where probability characteristics of signals are unknown, except for sta-
tionarity and ergodicity. The context consists of signals in a fixed (translation invariant)
neighbourhood of each position in the sequence or array. Because marginal probabil-
ity distributions of stationary and ergodic signals are translation invariant, DUDE uses
relative frequencies of different signals with the same context first to learn the error
probability for the channel and then to detect and correct errors.

Efficiency of DUDE essentially depends on context geometry, i.e. the number and
relative positions of neighbours. Generally, most adequate geometry depends on signal
sets to denoise. But typically the context is pre-defined by heuristic considerations,
e.g., signals in a fixed rectangular window around each position. This paper attempts
to directly estimate the best context assuming that the noisy signals are samples of a
nonparametric generic Markov–Gibbs random chain or field [4]. This spatially uniform
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model is also stationary and ergodic, but it adds one more general restriction, namely,
only pairwise dependencies between each signal and its context. This restriction allows
for the approximate maximum likelihood estimate (MLE) of the context.

The paper is organised as follows. Section 2 describes DUDE in brief, compares it
to a conventional median filter denoiser (MFDE), and discusses the MLE of context for
the Markov–Gibbs signal model. Experiments with DUDE and MFDE and an entropy-
based choice of the context size are presented in Section 3.

2 Maximum Likelihood Context

For brevity, we address only 2D binary images, although with obvious changes our
consideration applies also to 2D arrays and 1D sequences of multi-level signals. Let
R = {(x, y) : x = 0, . . . , X − 1; y = 0, . . . , Y − 1} denote an arithmetic 2D lattice
supporting signal arrays g : R → Q where Q = {0, . . . , Q− 1} is a finite set of scalar
signals (Q = 2 for binary images). A translation invariant neighbourhood of size K for
each site (x, y) ∈ R effects conditional probabilities of signal values g(x, y) ∈ Q. Its
geometry is specified by a set of (x, y)-increments N = {(ξk, ηk) : k = 1, . . . , K} such
that each signal g(x, y) has the context Cj = {g(x+ ξ, y+ η) : (ξ, η) ∈ N; (x+ ξ, y+
η) ∈ R}. For binary images, there are 2K different contexts Cj ; j ∈ {0, . . . , 2K − 1},
such that j is the binary number q1q2 . . . qK where qk ∈ Q.

Both DUDE and MFDE use contexts to decide whether a binary signal is true or
corrupted. The passive MFDE follows the majority rule: each signal g(x, y) is true if at
least half of the context signals (g(x + ξ, y + η) : (ξ, η) ∈ N) have the same value.
The active DUDE finds 2K+1 conditional frequencies f(q|Cj); q ∈ Q, of signals in
a pixel, given its context Cj of size K; f(0|Cj) + f(1|Cj) = 1. If the minimum of
these two frequencies is less than a certain threshold, θ, then such “less frequent” signal
with this particular context is assumed to be noisy and will be reversed. The threshold
derived in [6] depends on the noise probability estimated by the minimum conditional
frequency of signals over all the contexts: Prnoise

∼= minj,q{f(q|Cj}.
We consider a noisy signal array g = (g(x, y) : (x, y) ∈ R) as a sample of a

Markov–Gibbs random field with translation invariant geometric structure of pairwise
dependencies between signals [4]. The model is specified with the Gibbs probability
distribution

Pr(g|N) ∝ exp


 ∑

(x,y)∈R


V (g(x, y)) +

∑
(ξ,η)∈N

Vξ,η(g(x, y), g(x + ξ, y + η))







Here, V : Q → U and Vξ,η : Q → U are Gibbs potentials and U is the set of
real numbers bounded from above. Both the potentials for and spatial geometry N of
interdependent signal pairs are not predefined, may differ for different types of signals,
and are estimated from a given signal array g.

The log-likelihood L(N|g) = 1
XY log Pr(g|N) maximised by the potentials and

depending only on the neighbourhood N is analytically approximated as L(N|g) =
−∑Q−1

q=0 f(q|g) log f(q|g) +
∑

(ξ,η)∈N dξ,η(g) by adapting the derivation in [4] to
different marginal signal probabilities. Here, dξ,η(g) is the squared distance between
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Fig. 1. Noiseless “Stars”, “Cyrillic Text”, and “Brodatz’s Cane”.

Noise: 5% 10% 20%

eDUDE = 0.06% 0.2% 1.1%

eMFDE = 0.04% 0.4% 1.5%

Fig. 2. Noisy and denoised “Stars”.

Table 1. Estimates of the noise probability Prnoise in DUDE.

Image: “Stars” “Cyrillic text” “Brodatz’s Cane”
Prnoise,%: 5 10 20 5 10 20 5 10 20
Size K: 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
Estimate, %: 5.1 2.3 9.9 8.3 19.8 19.2 7.4 5.2 12.7 10.4 23.0 20.6 5.7 4.9 11.2 10.1 23.8 19.7

the frequency distribution Fξ,η(g) = {fξ,η(q, s|g) : q, s ∈ Q2} of actual signal
cooccurrences (g(x, y) = q, q(x + xi, y + η) = s) in translation invariant pixel
pairs (x, y), (x + ξ, y + η) : (x, y) ∈ R; (x + ξ, y + η) ∈ R and the like distri-
bution of independent signals with the same marginal probabilities f(q|g); q ∈ Q:
dξ,η(g) =

∑
(q,s)∈Q (fξ,η(q, s|g) − f(q|g)f(s|g))2. Therefore, the approximate MLE
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Noise: 5% 10% 20%

eDUDE = 2.1% 4.2% 9.3%

eMFDE = 4.4% 6.3% 10.2%

Fig. 3. Noisy and denoised “Cyrillic Text”.

of the context of a given size K is specified for a particular signal array g by the K
top-rank distances dξ,η(g). But it is still necessary to quantitatively relate the context
size K ensuring better performance to the context statistics used by DUDE.

3 Adaptive Maximum Entropy Contexts

Figure 1 shows initial binary images “Stars”, “Cyrillic text”, and “Brodatz’s Cane”
used in experiments and having 0.3%, 21%, and 66% of black pixels, respectively. The
noisy versions obtained by modelling a symmetric transmission channel are presented
in Figs. 2–4 together with results of denoising. The channel makes independent random
bit inversions with a fixed probability p = 0.05, 0.10, or 0.20. Experiments below
compare DUDE with the adaptively chosen contexts to MFDE with the same contexts.

For small context sizes, the minimum relative frequency of contexts is a reasonable
probability estimate. But as mentioned in [6], it fails for larger contexts due to a large
number of too rare or simply absent signal configurations in a given image. Thus we
estimate the noise probability and the relevant threshold using only small radially sym-
metric contexts. Table 1 shows these latter estimates for the symmetric contexts of size
2 and 4 in the noisy images in Figs. 2–4. The estimate for size K = 4 fails for “Stars”
because of a very small black area. To conduct all experiments in the same conditions,
the probability estimates for the smallest symmetric context of size 2 is used below. For
two other images the estimates for the size 4 are more adequate, but changes in quality
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Noise: 5% 10% 20%

the best DUDE-context in the window 13 × 13

eDUDE = 1.6% 2.7% 7.6%

eMFDE = 2.2% 3.5% 7.1%
the best DUDE-context in the window 81 × 81

eDUDE = 1.2% 3.4% 9.4%

eMFDE = 2.2% 4.1% 9.7%

Fig. 4. Noisy and denoised “Brodatz’s Cane”.

of denoising are marginal. In all our experiments asymmetric neighbourhoods ranked
below symmetric ones. Thus, we use below only these latter.

Tables 2–4 present residual errors after image DUDE and MFDE using radially
symmetric adaptive contexts N = {(ξi, ηi), (−ξi,−ηi) : i = 1, . . . , K of size K =
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Table 2. Denoising of “Stars”: 0.3% black (B) and 99.7% white (W) pixels (e... denotes the total
residual error after denoising; “B” and “W” indicate the individual residual errors for the black
and white areas of the noiseless image, respectively; the maximum entropy and the minimum
total errors are boldfaced; the individual errors are in italic and underlined).

Half-size i 1 2 3 4 5 6 7 8 9 10
Noise: 5% (actual: B 2.19%; W 5.09%); θ = 0.096

(ξi, ηi) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) (0, 2) (1,−2) (0, 3) (1,−1) (5,−1)
Entropy 1.0 2.2 2.5 2.2 1.6 1.3 1.2 1.0 0.9 0.8
eDUDE,% 0.2 0.08 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.8

B,% 53.6 4.9 5.5 4.4 3.8 2.2 2.2 2.2 2.2 2.2
W,% 0.01 0.06 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.7

eMFDE, % 0.8 0.1 0.04 0.05 0.05 0.1 0.1 0.1 0.1 0.2
B,% 2.7 2.2 3.3 14.2 15.3 30.1 38.3 50.3 48.1 64.5
W,% 0.1 0.03 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Noise: 10% (actual: B 10.9%; W 9.9%); θ = 0.178

(ξi, ηi) (0, 1) (1, 1) (0, 2) (2, 0) (2,−1) (1, 0) (2, 2) (1,−2) (1, 2) (4, 2)
Entropy 1.0 1.9 2.9 2.8 2.3 1.8 1.5 1.3 1.1 1.0
eDUDE,% 0.3 0.2 0.2 0.2 0.4 0.5 0.9 1.3 1.9 2.5

B,% 99.5 65.6 61.2 42.6 27.9 12.0 10.9 10.9 10.9 10.9
W,% 0.0 0.03 0.05 0.1 0.3 0.5 0.9 1.3 1.8 2.5

eMFDE, % 2.8 1.0 0.4 0.2 0.2 0.1 0.1 0.2 0.2 0.2
B,% 13.1 24.6 27.3 33.9 42.6 37.2 50.8 56.3 61.2 71.6
W,% 2.8 0.9 0.3 0.1 0.03 0.02 0.0 0.0 0.0 0.0

Noise: 20% (actual: B 21.9%; W 19.9%); θ = 0.317

(ξi, ηi) (0, 2) (2,−2) (3,−5) (1,−1) (4, 6) (1, 1) (3, 4) (6, 3) (2,−1) (2, 4)
Entropy 1.0 1.5 2.5 3.1 3.1 2.5 1.9 1.5 1.1 0.8
eDUDE,% 0.3 0.3 0.3 0.5 1.1 2.3 4.5 7.4 10.2 13.1

B,% 99.5 99.5 99.5 92.8 80.3 64.5 51.4 43.7 32.2 28.4
W,% 0.0 0.0 0.02 0.2 0.4 2.1 4.3 7.3 10.1 13.0

eMFDE, % 10.0 6.0 3.5 2.2 1.5 1.0 0.7 0.6 0.5 0.4
B,% 32.8 50.8 69.9 67.8 78.1 75.4 82.0 88.5 87.4 92.4
W,% 10.2 5.9 3.3 2.0 1.2 0.8 0.5 0.3 0.2 0.1

2, 4, . . . , 20. These results suggest that the entropy of distribution of the minimum rel-
ative frequencies of signal contexts roughly indicates the best choice of K . In the most
cases, the maximum entropy either points directly to the context yielding the smallest
residual error or to the adjacent variant. Apart from “Stars” under most intensive noise,
DUDE always outperforms MFDE, but both the denoisers are opposite with respect to
which areas are successfully denoised or additionally corrupted.

The channel with 5% noise had actually corrupted only 2.2% of the small black
“Stars”. The best DUDE result fot the context of size 3 is slightly worse than of MFDE
with the same context. Both DUDE and MFDE additionally corrupt the black areas
(to 5.5% and 3.3%, respectively) while almost completely clean the white background
(0.05% and 0.01% of the residual noise, respectively, comparing to the initial 5.09%).
When the context size increases, DUDE corrupts the black area less (down to 2.2%)
but simultaneously leaves a bit more noisy white area (up to 0.7%). MFDU behaves in
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Table 3. Denoising of “Cyrillic text”: 20.7% black (B) and 79.3% white (W) pixels (the same
notation as in Table 2).

Half-size i 1 2 3 4 5 6 7 8 9 10
Noise: 5% (actual: B 4.98%; W 5.06%); θ = 0.137

(ξi, ηi) (1, 0) (0, 1) (1,−1) (1, 1) (2, 0) (0, 2) (0, 5) (0, 4) (2, 1) (2,−1)
Entropy 1.0 2.4 3.3 3.7 3.5 2.6 1.7 1.1 0.7 0.5
eDUDE,% 3.5 2.8 2.3 2.1 2.1 2.0 2.1 2.2 2.3 2.4

B,% 12.5 8.2 5.6 5.0 4.8 5.0 5.2 5.3 5.3 5.3
W,% 1.1 1.4 1.4 1.3 1.4 1.2 1.2 1.3 1.5 1.6

eMFDE,% 4.4 4.8 5.4 6.0 6.3 6.5 6.6 7.5 8.0 8.4
B,% 10.1 11.1 12.5 14.1 16.6 15.6 16.8 19.2 21.8 23.8
W,% 3.0 3.1 3.5 3.8 3.6 4.0 4.0 4.4 4.3 4.4

Noise: 10% (actual: B 9.83%; W 10.0%); θ = 0.222

(ξi, ηi) (1, 0) (0, 1) (1,−1) (1, 1) (2, 0) (0, 2) (0, 5) (0, 4) (2, 1) (2,−1)
Entropy 1.0 2.4 3.2 3.7 3.7 3.0 1.9 1.1 0.7 0.5
eDUDE,% 6.1 5.0 4.5 4.2 4.2 4.0 4.2 4.5 4.9 5.4

B,% 18.3 17.6 11.9 11.4 10.9 10.5 10.5 10.5 10.4 10.2
W,% 2.9 1.7 2.5 2.3 2.4 2.3 2.5 2.9 3.5 4.2

eMFDE,% 7.3 6.3 6.5 6.8 7.1 7.3 7.4 8.2 8.6 9.0
B,% 13.8 13.7 15.0 16.2 18.6 17.8 18.8 21.1 23.5 25.4
W,% 5.5 4.3 4.3 4.3 4.0 4.5 4.3 4.7 4.7 4.7

Noise: 20% (actual: B 19.8%; W 19.9%); θ = 0.355

(ξi, ηi) (1, 0) (0, 1) (1,−1) (1, 1) (2, 0) (0, 2) (0, 5) (0, 4) (2, 1) (2,−1)
Entropy 1.0 2.3 3.2 3.4 3.5 3.5 2.2 1.2 0.7 0.5
eDUDE,% 13.0 10.4 9.7 9.4 9.3 9.4 10.7 11.6 13.1 15.0

B,% 29.9 28.2 30.0 27.8 26.2 25.6 25.6 23.5 21.3 20.4
W,% 8.5 5.7 4.4 4.6 4.8 5.1 6.7 8.5 10.9 13.5

eMFDE,% 15.3 12.0 10.9 10.3 10.2 10.1 9.9 10.2 10.5 10.8
B,% 22.4 21.1 21.4 22.0 24.0 23.7 24.9 26.9 28.1 29.2
W,% 13.4 9.6 8.2 7.1 6.5 6.4 5.9 5.7 5.8 5.9

the opposite way because the larger contexts result in more corrupted black areas (up
to 64.5%) while the white background becomes completely noiseless. For the larger
noise level, the trends are even more transparent. With the small-size contexts (K ≤ 5),
the overall quality of DUDE is better. But DUDE considerably corrupts the black area
and simultaneously reduces the noise in the white area while MFDU less corrupts the
former but less clean the latter. For larger contexts (K > 5), MFDU becomes more
efficient. Anyway, as follows from Table 5, heuristic choice of the context gives slighly
worse results than the maximum entropy based one.

For two other images with more balanced ratios of black and white areas, DUDE
always outperforms MFDE under the adaptive context. But the difference tends to be-
come low when the noise level increases. Once again, in “Cyrillic text” DUDE starts
from an additional corruption of the smaller black area and cleans the white one to the
larger extent. Then the corruption of the former decreases (but no lesser than the noise
level) whereas the level of noise cleaning in the latter varies only slightly up and down.
MFDU gradually corrupts the black area more and more while slightly improves the
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Table 4. Denoising of “Brodatz’s Cane”: 66% black (B) and 34% white (W) pixels (the same
notation as in Table 2).

Half-size i 1 2 3 4 5 6 7 8 9 10
Noise: 5% (actual: B 4.98%; W 4.99%); θ = 0.108

(ξi, ηi) (0, 1) (1, 0) (1,−1) (1, 1) (0, 2) (1, 2) (1,−2) (2, 0) (2,−1) (2, 1)
Entropy 1.0 2.4 3.3 2.9 2.0 1.4 1.1 0.9 0.7 0.6
eDUDE,% 2.2 1.8 1.6 1.4 1.5 1.7 2.0 2.2 2. 5 2.7

B,% 1.7 1.6 1.0 1.1 1.2 1.4 1.6 1.8 2.1 2.2
W,% 3.1 2.1 2.7 2.0 2.1 2.2 2.6 2.9 3.2 3.4

eMFDE, % 2.2 1.9 2.2 2.5 2.8 3.4 4.0 4.5 5.0 5.3
B,% 2.0 1.0 0.7 0.6 0.5 0.6 0.6 0.5 0.5 0.5
W,% 2.7 3.4 4.8 6.1 7.2 8.9 10.4 12.0 13.4 14.4

Noise: 10% (actual: B 9.76%; W 9.79%); θ = 0.200

(ξi, ηi) (0, 1) (1, 1) (1,−1) (1, 1) (0, 2) (1, 2) (2, 0) (1,−2) (2,−1) (2, 1)
Entropy 1.0 2.5 3.3 3.3 2.4 1.6 1.1 0.8 0.6 0.5
eDUDE,% 4.9 3.5 3.2 2.7 2.8 3.5 4.1 5.0 5.8 6.5

B,% 4.2 2.2 1.9 1.6 1.8 2.5 3.1 4.1 5.0 5.9
W,% 6.3 6.1 5.7 4.7 4.5 5.3 5.8 6.6 7.2 7.5

eMFDE, % 4.9 3.5 3.4 3.5 3.9 4.4 4.8 5.1 5.6 5.9
B,% 4.6 2.4 1.7 1.6 1.3 1.2 1.2 1.0 1.1 1.0
W,% 5.6 5.5 6.6 7.3 8.8 10.4 11.6 12.9 14.2 15.3

Noise: 20% (actual: B 19.7%; W 20.1%); θ = 0.317

(ξi, ηi) (0, 1) (1.0) (1,−1) (1, 1) (0, 2) (1, 2) (1,−2) (2, 0) (2,−1) (2, 1)
Entropy 1.0 2.4 3.2 3.5 3.1 1.9 1.1 0.7 0.4 0.3
eDUDE,% 13.2 9.6 8.6 7.6 8.0 9.7 12.1 14.8 16.8 18.3

B,% 11.8 7.7 5.0 3.9 5.0 6.7 9.6 13.1 15.8 17.7
W,% 15.5 13.0 15.3 14.5 13.7 15.1 16.6 17.8 18.3 19.1

eMFDE, % 13.2 9.6 8.1 7.1 6.7 6.7 6.9 6.9 7.2 7.5
B,% 12.4 8.3 6.0 5.0 3.8 3.5 3.2 2.7 2.6 2.4
W,% 14.2 11.9 11.9 11.0 12.0 12.9 13.9 14.9 15.9 17.3

Table 5. Denoising of “Stars”: the nearest symmetric 8-neighbourhood.

Noise θ Residual noise
DUDE MFDE

eDUDE,% B-noise,% W-noise,% eMFDE,% B-noise,% W-noise,%
5% 0.096 0.08 3.28 0.07 0.08 23.0 0.01
10% 0.178 0.26 29.0 0.18 0.21 29.0 0.12
20% 0.362 0.43 73.8 0.22 2.08 35.5 1.98

noise removal from the white area when the context size is growing up. If the sizes of
the black and white areas are closer (“Brodatz’s Cane”), these differences as well as the
differences in the total quality of denoising decrease, and at lower noise levels DUDE
outperforms MFDE while for the higher noise MFDE turns to be slightly better. Both
the denoisers in this case reduce about 60–70% of the initial noise.

Comparisons to a heuristic context selection show that in the most cases the adap-
tive choice returns better contexts. It is worthy to mention that the best contexts are
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not necessarily continuous. For “Stars” and “Cyrillic text”, the window size to compare
possible pixel pairs almost does not impact the choice of the very first characteristic
neighbours. The characteristic context for the periodic texture “Brodatz’s Cane” esti-
mated in the smaller window 13 × 13 differs from the context in the larger window
81 × 81 (see Fig. 4). It should be noted that under the manually selected best thresh-
old θ, the latter disjoint context results in even slightly better denoising. But when the
thresolds are estimated from the noisy image itself, the contexts for the smaller windows
give better results.

4 Conclusions

These and other similar experiments show that, in principle, the contexts for DUDE
may be chosen using the maximum likelihood structure of pairwise signal dependences
in noisy binary images. If the noiseless black and white area are not considerably un-
balanced, the active DUDE with the adaptively chosen context mostly outperforms the
more conventional passive MFDE. But the higher the noise, the smaller the difference
between both the denoisers. The size of the context can roughly be related to the max-
imum entropy of the distribution of the minimum relative frequencies of signals with
the same contexts (these frequencies are used for DUDE itself, too).

When denoising an image, MFDE always additionally corrupts the non-dominant
area in favour of cleaning the dominant one. DUDE is also biased to the latter area but
corrupts it to the lesser extent.
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