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Abstract. This paper presents a strategy for combining the results of
image classification and image segmentation. The visual features used
for classification and segmentation may be different in general. Fusion
is performed in a Maximum Likelihood framework using the Expecta-
tion Maximization algorithm. Preliminary results show that segmenta-
tion may effectively contribute to increase the quality of classification.

1 Introduction

In several computer vision problems, the analyst has access to different types
of observables (let’s call them “features”) for the same image. These features
often correspond to very different physical causes. For example, the color of a
pixel depends on the combination of the reflectance of the surface, the spectrum
of the illuminant, and the illumination geometry. The texture around a pixel
depends on local albedo and/or geometrical variations. The optical flow at one
point depends on the 3D motion of the imaged surface relative to the camera.
All of these different observables should be combined to infer information about
the scene.

Two fundamental low–level tasks of image analysis are segmentation/group-
ing and classification, as summarized below.

1. Segmentation/grouping: The aim is to identify perceptually homogeneous
regions in the image. Such regions don’t have pre-defined labels: they do
not necessarily correspond to semantic categories known in advance. Seg-
mentation is typically performed by first establishing a suitable similarity
metric, sometimes derived by generative models. The segmentation problem
can then be recast as an optimization task (energy or cost minimization [17],
Maximum Likelihood or Maximum a posteriori [16]). This approach is in-
herently global, in that the decision at any pixel requires examination of all
other points in the image.

2. Classification (labeling): In this case, a number of classes is known in advance,
together with their statistical description or at least with a number of labeled
training samples. The goal is to assign each image point or region to just one
class. Classification may use image features defined at the pixel level (such as
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color, motion field or texture1), or at a higher abstraction level (e.g., shape or
spatial distribution). Note that even in the case of pixel–based classification,
global reasoning is often invoked to enforce spatial coherence priors.

Whereas these two families of algorithms are traditionally used in different
contexts, we show in this paper that segmentation, an unsupervised process
that is blind to the semantic categories defined by the user, can actually be
used to improve the classification process. This is particularly useful in two
cases of practical importance. The first case is when the visual features used
to segment the image cannot be used for classification. For example, gradient–
based techniques such as snakes can effectively isolate an image region, but
classification based on the boundary contour alone may be difficult. Another
example is the use of optical flow to identify areas corresponding to different
motion models. Once these regions have been segmented out, further reasoning,
possibly using different features such as color, texture and shape, should be used
for region labeling.

The second case of interest is when there is shortage of training data. Due
to the “curse of dimensionality”, high–dimensional features (e.g., texture) re-
quire much larger training data sets than low–dimensional features (e.g., color).
Whereas learning a classifier may be unpractical in such cases, clustering only
requires a notion of distance in feature space, which can be defined without
reliance on training data.

Intuitively, segmentation should provide some sort of prior information to
the classifier. If two image points belong to the same segment, it is reasonable to
expect (although by no means necessary) that they also belong to the same class.
A naive application of this intuition could lead to a procedure that assigns all
points in the same segment to the class that is best represented in the segment.
This “hard” fusion policy, however, would be unsatisfactory in general; a softer
strategy that takes into consideration the degree of confidence in both classifi-
cation and segmentation would be much more desirable. Indeed, our algorithm
requires that the result of these two operation is expressed either in terms of a
class– (or segment–) posterior distribution or, equivalently, in terms of class– (or
segment–) conditional likelihoods. These type of information is normally avail-
able from the classifier. For what concerns the segmenter, some algorithms do
produce soft cluster assignment (e.g., Expectation Maximization), while others
produce hard (binary) assignments (e.g. k–means, graph cutting, snakes). It is
always possible, though, to artificially “soften up” the result of hard segmenter,
by creating at each point a distribution over the set of segments, peaking at the
segment assigned to that point.

The intuition behind our approach is simple. The segmenter identifies areas
that are homogeneous, according to one considered feature. We hypothesize that
there is a correlation between these segments and the semantic classes that we
actually interested in. The result of the classifier (based on a different feature)
1 Strictly speaking, texture is an attribute of a region, not of a single pixel. However,

one may define a texture field, by assigning to each pixel the texture of a small region
centered in that pixel.
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will be biased toward using any evidence of such correlation. The correlation
between clusters and classes, however, is unknown, and must be estimated from
the image being analyzed. This “chicken and egg” problem is solved using the
elegant formalism of the Expectation Maximization algorithm.

The main hypothesis used by our approach is the conditional independence
of the two features for each class/cluster combination. This is a generalization of
class–conditional feature independence, often assumed in decision fusion. When
this property is satisfied, it is well known that the posterior class distribution
given the two observed features factorizes into the product of the two marginal
posterior class distributions (divided by the class prior). Classifiers that com-
pute the product of these two posterior distributions are often called “naive
Bayes”. Since the conditional assumption is at the core of our algorithm, we
discuss its relevance and shortcomings in Section 2. Our iterative solution to the
class/segment fusion is introduced in Section 3, where we also show an example
of application. Section 4 has the conclusions.

2 Conditional Independence and Bayes Fusion

We introduce here the notation that will be used throughout this article. Let f1

and f2 be two different local feature vectors. For example, f1 could be the (r,g,b)
color at a pixel, and f2 the texture descriptor at the same pixel. Consider a set
of N classes {cj}. The class–conditional likelihood of feature fi given class cj

is represented by pi(fi|cj). Pj represents the prior probability of class cj , while
Pi(cj |fi) is represents the class–posterior probability distribution for a given
feature fj . Bayes’ rule can thus be expressed as Pi(cj |fi) = pi(fi|cj)P (cj)/p(fi),
where pi(fi) is the total likelihood of feature fi. The mode of the posterior
probability yields the Bayes classification at the chosen pixel.

The fusion problem arises when we have independent information about class
assignment from the two features f1 and f2. We would like to infer P1,2(cj |f1, f2)
from P1(cj , f1) and P2(cj , f2) (or, equivalently, p1,2(f1, f2|cj) from p1(f1|cj) and
p2(f2|cj)). Unfortunately, it is impossible, in general,to infer the joint density
p1,2(f1, f2|cj) from its marginals. A popular simplifying assumption is the class–
conditional independence of the two features, that is:

p1,2(f1, f2|cj) = p1(f1|cj)p2(f2|cj) (1)

for each choice of class cj . This assumption is easily transformed into an equiv-
alent condition on the posterior distributions:

P1,2(cj |f1, f2) = P1(cj |f1)P2(cj |f2)/P (cj) (2)

Equation (2) determines a Bayes fusion classifier, more commonly known as a
naive Bayes system [11, 3]. These two terms will be liberally interchanged in this
work.

How acceptable is the conditional independence assumption? Although it is
a weaker condition than total independence, conditional independence can be
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grossly violated in practice. The real question, however, is how much this (gen-
erally wrong) assumption affects the classification performances. For example,
it would be interesting to compare the misclassification rate of the Bayes fusion
classifier with the (necessarily lower) Bayes rate (that is, the misclassification
rate of the Bayes classifier which uses the real joint posterior P1,2(cj |f1, f2) [16]).
An analytical expression for such quantities cannot be found in general, although
Shi and Manduchi [18] computed an upper bound for the difference of these two
misclassification rates as a function of the correlation between the two features
in a simple equivariant Gaussian case.

It is well known that, in practical applications, Bayes fusion (or naive) clas-
sifiers perform rather well, despite the possible inaccuracy of the approximation
in (1) [11, 3]. Experimental studies include [8, 9]. Friedman [4] justifies the some-
times surprisingly good results achieved by naive Bayes classifiers in light of the
bias/variance dilemma. The bias/variance theory, first introduced by Geman for
the regression problem [5], links the expected quadratic estimation error to the
randomness in the choice of the training data set and the complexity of the algo-
rithm. More precisely, the bias represents the difference between the estimates,
averaged over all possible choices of training samples, and the optimal (in L2

sense) estimate (i.e., the conditional expectation). The variance is the actual
variance of estimation, again computed using the distribution over the training
samples. In general, complex regression algorithms have low bias but high vari-
ance (i.e. they may overfit the data), while this behavior is reversed for simpler
algorithms. Since the squared bias and the variance contribute as additive terms
to the overall estimation error, it is seen that lower complexity algorithms may
outperform more complex algorithms when only a limited amount of training
data is available (see also [14, 15, 13]).

A similar situation occurs in the case of classification, although the definition
of bias and variance is somewhat different here. Friedman [4] first showed that
even in this case, variance with respect to the choice of training sample has an
important role in the quality of the result (that is, the misclassification rate).
Further work in the field includes [10, 1, 2, 19, 20]. In spite of their obvious bias
(consequent to the approximation in (1)), naive Bayes systems are described
by a “simple” posterior distribution, and it is reasonable to assume that they
are less sensitive to the choice of the training data [4]. Shi and Manduchi [18]
confirmed this hypothesis, by showing experimentally that the difference between
the misclassification rate of a Bayes fusion classifier and the Bayes rate decreases
as fewer and fewer data are used for training.

3 Bayes Fusion of Segmentation and Classification

In this section we tackle the main objective of this contribution, namely the
fusion of a classifier with a segmenter. As we mentioned in the Introduction,
we will assume that segmentation is expressed by either a posterior distribution
Pk(sk|fi) over the set of segments {sk}, or a conditional likelihood pk(fi|sk).
Let’s assume that f1 is the feature used for classification, and f2 is the feature
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used for segmentation. We would like to be able to use the segmentation using
f2 to assist the classification over the set of classes {cj}. Formally, our problem
an be formulated as follows:

Given P1(cj |f1) and P2(sk|f2), estimate P1,2(cj |f1, f2).

We could also consider a parallel problem, but defined using the conditional
likelihoods:

Given p1(f1|cj) and p2(f2|sk), estimate P1,2(cj |f1, f2).

This formulation makes our fusion problem similar to the case of Section
2, with one important difference: now the two marginal posterior distributions
are defined over different sets, {cj} and {sk}, that are semantically different
(and have different cardinality in general). In order to attempt a solution to this
problem, we first extend the notion of conditional independence to the case of
conditional likelihoods defined over the cartesian product of the features and the
cartesian product of the class/segment sets:

p1,2(f1, f2|cj , sk) = p1(f1|cj)p2(f2|sk) (3)

The same cautionary disclaimer about the validity and consequences of the con-
ditional independence approximation, discussed in Section 2, applies to this case
as well. Given this assumption, we can use Bayes’ rule to write the joint posterior
distribution given the two features as follows:

P1,2(cj , sk|f1, f2) =
p1(f1|cj)p2(f2|sk)P1,2(cj , sk)

∑
j̄,k̄ p1(f1|cj̄)p2(f2|sk̄)P1,2(cj̄ , sk̄)

(4)

The posterior distribution P1,2(cj |f1, f2) can then be obtained by marginalizing
P1,2(cj , sk|f1, f2) in (4):

P1,2(cj |f1, f2) =
∑

k

P1,2(cj , sk|f1, f2)

The only unknown quantity in (4) is the joint prior distribution P1,2(cj , sk). In
fact, this distribution is the key to understanding our fusion strategy. One easily
proves that if the priors are separable, that is, if P1,2(cj , sk) = P1(cj)P2(sk),
then segmentation does not contribute to the fusion process. Indeed, in this case
P1,2(cj , sk|f1, f2) factorizes into P1(cj |f1)P2(sk|f2), and marginalization over sj

simply yields P1(cj , sk|f1, f2) = P1(cj |f1).
The more interesting cases are when P1,2(cj , sk) is not separable, that is,

when knowledge about which segment the point belongs to gives us some prior
information about the class. Since we don’t know P1,2(cj , sk), we should try to
extract it from the data. We will first consider the case the conditional likelihoods
p1(f1|cj) and p2(f2|sk) (and therefore p1,2(f1, f2|cj , sk) from (3)) are known, or
that a reasonable assumption about their values can be made. We can then use
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a Maximum Likelihood criterion, and search for the joint priors that maximize
the likelihood of the data p1,2(f1, f2) according to our model, where

p1,2(f1, f2) =
∑

j,k

p1,2(f1, f2|cj , sk)P1,2(cj , sk)

A classic solution is given by the Expectation Maximization algorithm, based on
the following iterations:

1. For each pixel x in the image, use the current values for P1,2(cj , sk) to
estimate an updated posterior distribution P1,2(cj , sk|f1(x), f2(x)) as by (4);

2. For each class cj and segment sk, average the posterior probabilities
P1,2(cj , sk|f1(x), f2(x)) over the image to obtain the updated prior distribu-
tion P1,2(cj , sk).

At each step, the total likelihood p1,2(f1, f2) increases or stays the same, and
therefore this procedure is guaranteed to converge to a (possibly local) maximum.

If the conditional likelihood of one feature (or both) is not known, but the
class– or segment–conditional probability is known, then some modifications are
in order. This could be the case when a hard segmenter is artificially transformed
into a soft segmenter by creating a simple posterior distribution at each pixel,
as mentioned earlier in the Introduction. For example, for a pixel x with fea-
ture f2(x) that was assigned to segment sk, we could hypothesize a posterior
distribution2

P2(sr|f2) = 1 − ε , r = k
ε/(Ns − 1) , r �= k

where Ns is the number of segments, and ε is a (small) positive constant. By
averaging the values of P2(sk|f2) over the image, one can estimate the prior
P2(sk). One could then set an artificial total likelihood p2(f2) that is constant
over all features in the image. At this point, the conditional likelihoods can be
computed using Bayes’ rule.

As an application example, consider the image of Figure 1. In this case, color
was used for classification, while texture was used for segmentation. A poorly
trained color classifier produced the unsatisfactory labeling of Figure 1 (b). The
three classes are: obsidian (the blue-ish rock, c1); basalt (the red rock, c2); and
sand (c3.) Texture–based unsupervised segmentation into two regions s1 and s2

(using Gabor features) yielded the results shown in Figure 1 (c). Texture was
unable to separate the two rocks, but did a good job at separating both rocks
from the sand. The fused classification (into the original three classes) is shown
in Figure 1 (d). It is seen that the quality of classification has improved through
fusion, although a small region surrounding the blue rock has been misclassified.
Table 1 shoes the joint prior distribution P1,2(cj , sk), which cannot be factorized
into the product of the two marginal priors.
2 This distribution may be inconsistent if two points with exactly the same feature f2

belong to different segments. This has not proven to be a problem in practice.
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(a) (b)

(c) (d)

Fig. 1. (a): Original image. (b): Supervised color–based classification (green: obsidian;
blue: basalt; red: sand.) (c) Unsupervised texture–based segmentation. (d) Fusion of
segmentation and classification.

Table 1. The prior distribution P1,2(cj , sk) for the example of Figure 1. Note that
P1,2(cj , sk) is not separable.

s1 s2

c1 0.120 0.262

c2 0.001 0.045

c3 0.564 0.008

4 Conclusions

Our fusion technique merges information from classification and segmentation
(with each point of the image characterized by an assignment distribution.)
In some sense, this corresponds to looking at the segmentation as a kind of
classification itself, with classes that don’t have a logical correspondence with
those used by the classifier.

A more intriguing form of hybrid fusion would also consider cases where only
partial segmentation is available, such as an edge segment partially separating
two regions. This edge segment may provide useful information to the classifier
(the regions at the two sides of the edge are likely to contain points from two
different classes). Unless one enforces contour closure, however, this information
cannot be directly exploit using the framework discussed in this paper, and more
research is needed for this type of problems.
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