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Abstract. Many cryptographic primitives begin with parameter gener-
ation, which picks a primitive from a family. Such generation can use pub-
lic coins (e.g., in the discrete-logarithm-based case) or secret coins (e.g.,
in the factoring-based case). We study the relationship between public-
coin and secret-coin collision-resistant hash function families (CRHFs).
Specifically, we demonstrate that:
– there is a lack of attention to the distinction between secret-coin

and public-coin definitions in the literature, which has led to some
problems in the case of CRHFs;

– in some cases, public-coin CRHFs can be built out of secret-coin
CRHFs;

– the distinction between the two notions is meaningful, because in
general secret-coin CRHFs are unlikely to imply public-coin CRHFs.

The last statement above is our main result, which states that there is no
black-box reduction from public-coin CRHFs to secret-coin CRHFs. Our
proof for this result, while employing oracle separations, uses a novel ap-
proach, which demonstrates that there is no black-box reduction without
demonstrating that there is no relativizing reduction.

1 Introduction

1.1 Background
Collision-Resistant Hashing. Collision-resistant (CR) hashing is one of the
earliest primitives of modern cryptography, finding its first uses in digital signa-
tures [Rab78,Rab79] and Merkle trees [Mer82,Mer89]. A hash function, of course,
maps (potentially long) inputs to short outputs. Informally, a hash function is
collision-resistant if it is infeasible to find two inputs that map to the same
output.

It is easy to see there is no meaningful way to formalize the notion of collision-
resistance for a single fixed-output-length hash function. Indeed, at least half of
the 2161 possible 161-bit inputs to SHA-1 [NIS95] have collisions (because SHA-1
has 160-bit outputs). Hence, an algorithm finding collisions for SHA-1 is quite
simple: it just has, hardwired in it, two 161-bit strings that collide. It exists,
even if no one currently knows how to write it down.
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Due to this simple observation, formal definitions of collision-resistant hash-
ing (first given by Damg̊ard [Dam87]) usually speak of collision-resistant function
families (CRHFs)1. A hash function family is collision-resistant if any adversary,
given a function chosen randomly from the family, is unable to output a collision
for it.

How to Choose from a Family? Most definitions of CRHFs do not dwell on
the issue of how a hash function is to be chosen from a family. In this paper, we
point out that this aspect of the definition is crucial. Indeed, in any application
of collision-resistant hashing, some party P must choose a function from the
family by flipping some random coins to produce the function description. As
we demonstrate, it is important to distinguish between two cases. In the public-
coin case these random coins can be revealed as part of the function description.
In the secret-coin case, on the other hand, knowledge of the random coins may
allow one to find collisions, and thus P must keep the coins secret after the
description is produced. (For examples of both cases, see Section 2.) We note
that the original definition of [Dam87] is secret-coin, and that the secret-coin
definition is more general: clearly, a public-coin CRHF will also work if one
chooses to keep the coins secret.

1.2 Initial Observations

Importance of the Distinction. The distinction between public-coin and
secret-coin CRHFs is commonly overlooked. Some works modify the secret-coin
definition of [Dam87] to a public-coin definition, without explicitly mentioning
the change (e.g., [BR97,Sim98]). Some definitions (e.g., [Mir01]) are ambiguous
on this point. This state of affairs leads to confusion and potential problems, as
discussed in three examples below.

Example 1. Some applications use the wrong definition of CRHF. For in-
stance, in Zero-Knowledge Sets of Micali, Rabin and Kilian [MRK03], the
prover uses a hash function to commit to a set. The hash function is chosen
via a shared random string, which is necessary because the prover cannot be
trusted to choose his own hash function (since a dishonest prover could ben-
efit from finding collisions), and interaction with the verifier is not allowed at
the commit stage (indeed, the prover does not yet know who the verifier(s)
will be). In such a setting, one cannot use secret-coin CRHFs (however, in
an apparent oversight, [MRK03] defines only secret-coin CRHFs). A clear
distinction between public-coin and secret-coin CRHFs would make it easier
to precisely state the assumptions needed in such protocols.

Example 2. The result of Simon [Sim98] seems to claim less than the proof
implies. Namely, the [Sim98] theorem that one-way permutations are unlikely
to imply CRHFs is stated only for public-coin CRHFs, because that is the

1 It is possible to define a single hash function (with variable output-length; cf. previous
paragraph) instead of a collection of them. In this case, it can be collision-resistant
only against a uniform adversary.
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definition [Sim98] uses. It appears to hold also for secret-coin CRHFs, but
this requires re-examining the proof. Such re-examination could be avoided
had the definitional confusion been resolved.
Example 3. The original result of Goldwasser and Kalai [GK03] on the
security of the Fiat-Shamir transform without random oracles has a gap
due to the different notions of CRHF (the gap was subsequently closed,
see below). Essentially, the work first shows that if no secret-coin CRHFs
exist, then the Fiat-Shamir transform can never work. It then proceeds to
show, in a sophisticated argument, that if public-coin CRHFs exist, then it
is possible to construct a secure identification scheme for which the Fiat-
Shamir transform always results in an insecure signature scheme. This gap
in the result would be more apparent with proper definitions.

Let us elaborate on the third example, as it was the motivating example for our
work. It is not obvious how to modify the [GK03] proof to cover the case when
secret-coin CRHFs exist, but public-coin ones do not. Very recently, Goldwasser
and Kalai [GK] closed this gap by modifying the identification scheme of the
second case to show that the Fiat-Shamir transform is insecure if secret-coin
(rather than public-coin) CRHFs exist. Briefly, the modification is to let the
honest prover choose the hash function during key generation (instead of the
public-coin Fiat-Shamir verifier choosing it during the interaction, as in the
earlier version).

Despite the quick resolution of this particular gap, it and other examples
above demonstrate the importance of distinguishing between the two types of
collision-resistant hashing. Of course, it is conceivable that the two types are
equivalent, and the distinction between them is without a difference. We there-
fore set out to discover whether the distinction between public-coin and secret-
coin hashing is real, i.e., whether it is possible that public-coin CRHFs do not
exist, but secret-coin CRHFs do.

1.3 Our Results

Recall that public-coin hashing trivially implies secret-coin hashing. We prove
the following results:

1. Dense2 secret-coin CRHFs imply public-coin CRHFs; but
2. There is no black-box reduction from secret-coin CRHFs to public-coin

CRHFs.

The first result is quite simple. The second, which is more involved, is obtained by
constructing oracles that separate secret-coin CRHFs from public-coin CRHFs.
Our technique for this oracle separation is different from previous separations
(such as [IR89,Sim98,GKM+00,GMR01,CHL02]), as explained below. We note
that our second result, as most oracle separations, applies only to uniform ad-
versaries (a notable exception to this is [GT00]).
2 A CRHF is dense if a noticeable subset of all keys of a particular length is secure;

see Section 3.
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Our results suggest that a gap between secret-coin and public-coin CRHFs
exists, but only if no dense secret-coin CRHFs exist. They highlight the impor-
tance of distinguishing between the two definitions of CRHFs.

In addition to these main results, Section 5 addresses secret vs. public coins
in other cryptographic primitives.

1.4 On Oracle Separations

Usually when one constructs a cryptographic primitive P (e.g., a pseudorandom
generator [BM84]) out of another cryptographic primitive Q (e.g., a one-way
permutation), P uses Q as a subroutine, oblivious to how Q implemented. The
security proof for P usually constructs an adversary for Q using any adversary
for P as a subroutine. This is known as a “black-box reduction from P to Q.”

Note that to show that no general reduction from P to Q exists requires
proving that Q does not exist, which is impossible given the current state of
knowledge. However, it is often possible to show that no black-box reduction
from P to Q exists; this is important because most cryptographic reductions are
black-box.

The first such statement in cryptography is due to Impagliazzo and
Rudich [IR89]. Specifically, they constructed an oracle relative to which key
agreement does not exist, but one-way permutations do. This means that any
construction of key agreement from one-way permutations does not relativize
(i.e., does not hold relative to an oracle). Hence no black-box reduction from key
agreement to one-way permutations is possible, because black-box reductions
relativize.

The result of [IR89] was followed by other results about “no black-box
reduction from P to Q exists,” for a variety of primitives P and Q (e.g.,
[Sim98,GKM+00,GMR01,CHL02]). Most of them, except [GMR01], actually
proved the slightly stronger statement that no relativizing reduction from P
to Q exists, by using the technique of constructing an oracle.

Our proof differs from most others in that it directly proves that no black-box
reduction exists, without proving that no relativizing reduction exists. We do so
by constructing different oracles for the construction of P from Q and for the
security reduction from adversary for P to adversary for Q. This proof technique
seems more powerful than the one restricted to a single oracle, although it proves
a slightly weaker result. The weaker result is still interesting, however, because it
still rules out the most common method of cryptographic reduction. Moreover,
the stronger proof technique may yield separations that have not been achievable
before.

We note that [GMR01] also directly prove that no black-box reduction exists,
without proving that no relativizing reduction exists. Our approach is different
from [GMR01], whose approach is to show that for every reduction, there is an
oracle relative to which this reduction fails.

For a detailed discussion on black-box reductions, see [RTV04]. All reductions
in this paper are what they refer to as fully black-box reductions.
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2 Definitions of Public-Coin and Secret-Coin CRHFs

Examples. Before we define public-coin and secret-coin hashing formally, con-
sider the following two example hash function families. The first one, keyed by
a prime p with a large prime q|(p − 1), and two elements g, h ∈ Z

∗
p of order q,

computes Hp,g,h(m) = gm1hm2 , where m1 and m2 are two halves of m (here we
think of m as an element of Zq×Zq) 3. The second one, keyed by a product n of
two primes p1 ≡ 3 (mod 8), and p2 ≡ 7 (mod 8) and a value r ∈ Z

∗
n, computes

Hn,r(m) = 4mr2|m|
mod n 4.

The first hash function family is secure as long as discrete logarithm is hard.
Thus, if one publishes the random coins used to generate p, g and h, the hash
function remain secure (as long as the generation algorithm doesn’t do anything
esoteric, such as computing h as a random power of g). On the other hand, the
second hash function family is secure based on factoring, and is entirely insecure
if the factors of n are known. Thus, publishing the random coins used to generate
p1 and p2 renders the hash function insecure, and the coins must be kept secret5.

Definitions. We say that a function is negligible if it vanishes faster than any
inverse polynomial. We let PPTM stand for a probabilistic polynomial-time Tur-
ing machine. We use M ? to denote an oracle Turing machine, and MA to denote
M instantiated with oracle A.

Let k be the security parameter, and let � be a (length) function that does
not expand or shrink its input more than a polynomial amount. Below we de-
fine two kinds of CRHFs: namely, secret-coin and public-coin. The secret-coin
CRHFs definition is originally due to Damg̊ard [Dam87], and the definition here
is adapted from [Rus95].

Definition 1. A Secret-Coin Collision Resistant Hash Family is a collection
of functions {hi}i∈I for some index set I ⊆ {0, 1}∗, where hi : {0, 1}|i|+1 →
{0, 1}|i|, and

1. There exists a PPTM GEN, called the generating algorithm, so that
GEN(1k) ∈ {0, 1}�(k) ∩ I.

2. There exists a PPTM EVA, called the function evaluation algorithm, so that
∀i ∈ I and ∀x ∈ {0, 1}|i|+1, EVA(i, x) = hi(x).

3. For all PPTM ADV, the probability that ADV(i) outputs a pair (x, y) such
that hi(x) = hi(y) is negligible in k, where the probability is taken over the
random choices of GEN in generating i and the random choices of ADV.

3 This family is derived from Pedersen commitments [Ped91].
4 This is essentially the construction of [Dam87] based on the claw-free permutations

of [GMR88].
5 It should be noted, of course, whether it is secure to publish the coins depends not

only on the family, but also on the key generating algorithm itself: indeed, the first
family can be made insecure if the coins are used to generate h as a power of g,
rather than pick h directly. Likewise, the second family could be made secure if it
were possible to generate n “directly,” without revealing p1 and p2 (we are not aware
of an algorithm to do so, however).
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Definition 2. A Public-Coin Collision Resistant Hash Family is a collection of
functions {hi}i∈{0,1}∗, where hi : {0, 1}�(|i|)+1→ {0, 1}�(|i|), and

1. A PPTM GEN on input 1k outputs a uniformly distributed string i of length
k.

2. There exists a PPTM EVA, called the function evaluation algorithm, so that
∀i ∈ {0, 1}∗ and ∀x ∈ {0, 1}�(|i|)+1, EVA(i, x) = hi(x).

3. For all PPTM ADV, the probability that ADV(i) outputs a pair (x, y) such
that hi(x) = hi(y) is negligible in k, where the probability is taken over the
random choices of GEN in generating i and the random choices of ADV.

A pair (x, y) such that hi(x) = hi(y) is called a collision for hi.

Remarks. The generating algorithm in the public-coin case is trivially satisfied.
We keep it here for comparison with the secret-coin case. Note that in both
cases, on security parameter k, GEN outputs a function that maps {0, 1}�(k)+1

to {0, 1}�(k). This may seem restrictive as the hash functions only compress one
bit. However, it is easy to see that hi can be extended to {0, 1}n for any n, and
remain collision-resistant with �(k)-bit outputs, by the following construction:
h∗

i (x) = hi(. . . hi(hi(hi(x1 ◦ x2 ◦ . . . ◦ x�(k)+1) ◦x�(k)+2) ◦x�(k)+3) . . . ◦xn), where
xj denotes the j-th bit of the input string x.

3 Dense Secret-Coin CRHFs Imply Public-Coin CRHFs

The notion of dense public-key cryptosystems was introduced by De Santis and
Persiano in [DP92]. By “dense” they mean that a uniformly distributed string,
with some noticeable probability, is a secure public key. We adapt the notion of
denseness in public-key cryptosystems from [DP92] to the context of CRHFs.
Informally, a d-dense secret-coin CRHF is a secret-coin CRHF with the following
additional property: if we pick a k-bit string at random, then we have probability
at least k−d of picking an index i for a collision-resistant function6.

Note that, for example, the factoring-based secret-coin CRHF from Section 2
is dense, because the proportion of k-bit integers that are products of two equal-
length primes is Θ(k−2). In fact, we are not aware of any natural examples of
secret-coin CRHFs that are not dense (artificial examples, however, are easy to
construct).

Given a d-dense secret-coin CRHF, if we pick kd+1 strings of length k at
random, then with high probability, at least one of them defines a collision-
resistant hash function.

Hence, we can build a public-coin CRHF from such dense secret-coin CRHF
as follows.

6 Confusingly, sometimes the term dense is used to denote a function family where
each function has a dense domain, e.g., [Hai04]. This is unrelated to our use of the
term.
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1. Generate kd+1 random k-bit strings, independently. These strings specify
kd+1 hash functions h1, h2, . . . hkd+1 in the secret-coin CRHF (strictly speak-
ing, some strings may not define functions at all, because they are not pro-
duced by GEN; however, simply define hi(x) = 0�(k) if EVA(i, x) does not
produce an output of length k in the requisite number of steps).

2. Through the construction described in Section 2, extend the domain of each
of these function to binary strings of length �(k)kd+1 + 1. Let the resulting
functions be h∗

1, . . . , h
∗
kd+1 .

3. On an input x of length �(k)kd+1 + 1, output concatenation of
h∗

1(x), h∗
2(x), . . . , h∗

kd+1(x).

The resulting hash maps binary strings of length �(k)kd+1 + 1 to binary
strings of length �(k)kd+1, and is collision-resistant because at least one of
h∗

1, h
∗
2, . . . , h

∗
kd+1 is. (If an adversary could find a collision in the resulting hash

function, then the same collision would work for collision-resistant hash function
among h∗

1, h
∗
2, . . . , h

∗
kd+1 , immediately leading to a contradiction.)

The above discussion yields the following theorem.

Theorem 1. The existence of dense secret-coin CRHF implies the existence of
public-coin CRHF.

4 Separating Public-Coin CRHFs
from Secret-Coin CRHFs

4.1 Black-Box Reductions

Impagliazzo and Rudich [IR89] provided an informal definition of black-box re-
ductions, and Gertner et al. [GKM+00] formalized it. We recall their formaliza-
tion.

Definition 3. A black-box reduction from primitive P to primitive Q consists
of two oracle PPTMs M and AQ satisfying the following two conditions:

If Q can be implemented, so can P : ∀N (not necessarily PPTM) imple-
menting Q, MN implements P ; and

If P is broken, so is Q: ∀AP (not necessarily PPTM) breaking MN (as an
implementation of P ), AAP ,N

Q breaks N (as an implementation of Q).

The first condition is only a functional requirement; i.e., the term “implement”
says nothing about security, but merely says an algorithm satisfies the syntax of
the primitive.

4.2 The Main Result

Theorem 2. There is no black-box reduction from public-coin CRHF to secret-
coin CRHF.
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Proof. The following proposition is at the heart of our approach: it shows that
it is sufficient to construct different oracles F and G, such that G is used in the
implementations, while F and G are used for the adversaries. This is in contrast
to the single-oracle approach usually taken to prove black-box separations.

Proposition 1. To show that there is no black-box reduction from public-coin
collision resistant hashing (P ) to secret-coin collision resistant hashing (Q), it
suffices to construct two oracles F and G such that,

1. there is an oracle PPTM L such that N = LG implements secret-coin hash-
ing;

2. for all oracle PPTM M , if MG implements public-coin hashing, then there
exists a probabilistic polynomial time adversary A such that AP = AF finds
a collision for MG;

3. there is no oracle PPTM B such that BF,G finds a collision for N .

Proof. To show that there is no black-box reduction from public-coin collision
resistant hashing (P ) to secret-coin collision resistant hashing (Q), we need to
negate the definition of black-box reduction from Section 2; i.e., we need to show
that for every oracle PPTMs M and AQ,

Q can be implemented: ∃N that implements Q, and if MN implements P ,
then

P can be broken, without breaking Q: ∃AP that breaks MN (as an imple-
mentation of P ), while AAP ,N

Q does not break N (as an implementation of
Q).

Recall that “implement” here has only functional meaning.
The first condition clearly implies that Q can be implemented. The second

condition also clearly implies that P can be broken: one simply observes that
MN = MLG

, and L is a PPTM; hence, writing MG is equivalent to writing
MN . The third condition implies that P can be broken without breaking Q,
essentially because Q can never be broken. More precisely, the third condition
is actually stronger than what we need: all we need is that for each AQ, there is
AP that breaks MN , while AAP ,N

Q does not break N . Instead, we will show that
a single AP essentially works for all AQ: namely, AP = AF, for a fixed oracle
F and a polynomial-time A. Such AP breaks MN ; however, as condition 3 in
the proposition statement implies, AAP ,N

Q will be unable to break N , because

AAP ,N
Q = AAF,LG

Q = BF,G for some oracle PPTM B.

Remarks. Note that if the implementation has access to not only G but also
F, it becomes the usual single-oracle separation. The reason why we do not give
the implementation access to F is to avoid “self-referencing” when defining F.
To see this, note that F is the “collision finder” and is defined according to the
oracles that the implementation has access to7.
7 Similar concern occurs in [Sim98], where constructing the collision-finder requires

more careful design.
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The rest of this section is devoted to constructing such F and G and proving
that they work.

4.3 The Oracles F and G

In constructing F and G, we will use the Borel-Cantelli Lemma (see, e.g., [AG96]),
which states that if the sum of the probabilities of a sequence of events converges,
then the probability that infinitely many of these events happen is zero. Formally,
Lemma 1 (Borel-Cantelli Lemma). Let B1, B2, . . . be a sequence of
events on the same probability space. Then

∑∞
n=1 Pr[Bn] < ∞ implies

Pr[
∧∞

k=1

∨
n≥k Bn] = 0.

We first construct “random” F (collision-finder) and G (secret-coin hash),
and then use the above lemma to show that at least one pair of F and G works.

Intuitively, we want F to break any public-coin hashing but not break some
secret-coin hashing. More precisely, F will find a collision if it is supplied with
the coins of the generating algorithm and will refuse to do so without the coins.

– G consists of two collections of functions {gi}i∈N and {hα}α∈{0,1}∗ , where
each gi is a random function from {0, 1}i to {0, 1}2i. We will call a binary
string valid if it is in the range of g, and invalid if not. Each hα is a random
function from {0, 1}|α|+1 to {0, 1}|α| if α is valid, and is a constant function
0|α| if α is invalid. We will call queries to hα valid (resp. invalid) if α is valid
(resp. invalid).

– F takes a deterministic oracle machine M ? and 1� as input, and outputs a
collision of length � + 1 for MG if MG satisfies the following conditions.
1. MG maps {0, 1}�+1 to {0, 1}�.
2. MG never queries hα for some α not obtained by previously querying g.

I.e., whenever MG queries hα, this α is the answer to some g-query that
MG has previously asked.

When both conditions hold, F picks a random x from {0, 1}�+1 that has a
collision, then a random y (
= x) that collides to x (i.e., MG(x) = MG(y)),
and outputs (x, y). Otherwise F outputs ⊥.
Observe that when F outputs (x, y), not only x, but also y is uniformly
distributed over all points that have a collision. Indeed, let C be the to-
tal number of points that have a collision, and suppose y has c colli-
sions (x1, x2, . . . , xc): then Pr[y is chosen] =

∑c
i=1 1/cPr[xi is chosen] =

1/c · (c/C) = 1/C.

Remarks. The reason for g being length-doubling is to have a “sparse” function
family. More specifically, it should be hard to get a value in the range of g without
applying it.

As in [Sim98], there are various ways of constructing F (the collision-finding
oracle): one can choose a random pair that collides, or a random x then a ran-
dom y (possibly equal to x) that collides to x. The second construction has the
advantage, in analysis, that both x and y are uniformly distributed but does
not always give a “correct” collision, like the first one does. Our F has both
properties.
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4.4 Secret-Coin Collision-Resistant Hash Family Based on G

In this section we construct a secret-coin CRHF. The construction is straight-
forward given the oracle G: the generating algorithm uses g and the hashing
uses h. More precisely, on input 1k the generating algorithm picks a random
seed r ∈ {0, 1}k and outputs α = gk(r). The hash function is hα. Note that the
adversary A (who is trying to find a collision) is given only α but not r. We will
show that for measure one of oracles F and G, the probability over r and A’s
coin tosses that A finds a collision for hα is negligible. Recall that A has access
to both F and G.

Define D as the event that A outputs a collision for hα in the following
experiment:

r ←R {0, 1}k, α← gk(r), (x, y)← AF,G(α).

And in the same experiment, define B as the event that during its computation,
A queries F on M ?, where M ? is some deterministic oracle machine that queries
its oracle on a preimage of α under gk (i.e., intuitively, M ? has r hardwired in it).
Suppose A’s running time is bounded by kc for some constant c. The probability
that B happens is at most the probability of inverting the random function gk.
If α has a unique preimage, this is at most kc/2k; the probability that α has two
or more preimages is at most 1/2k (because it’s the probability that r collides
with another value under gk); hence Pr[B] ≤ (kc + 1)/2k. The probability that
D happens conditioned on ¬B is at most the probability of finding a collision
for random function hα, which is bounded by k2c/22k. Recall that A can be
randomized. We thus have

Pr
F,G,r,A

[D] = Pr[B] ·Pr[D|B] + Pr[¬B] ·Pr[D|¬B]

≤ Pr[B] + Pr[D|¬B]
≤ (kc + 1)/2k + k2c/22k

≤ 2kc/2k .

By the Markov inequality, PrF,G[Prr,A[D] ≥ k2 · 2kc/2k] ≤ 1/k2. Since∑
k 1/k2 converges, the Borel-Cantelli lemma implies that for only measure zero

of F and G, can there be infinitely many k for which event D happens with prob-
ability (over r and A’s coins) greater than or equal to kc+2/2k−1. This implies
that for measure one of F and G, event D happens with probability (over r and
A’s coins) smaller than kc+2/2k−1 (a negligible function) for all large enough k.
There are only countably many adversaries A, so we have the following lemma.

Lemma 2. For measure one of F and G, there is a CRHF using G, which is
secure against adversaries using G and F.

4.5 No Public-Coin Collision-Resistant Hash Family Based on G

In this section we show that any implementation of public-coin hashing using
oracle G cannot be collision-resistant against adversaries with oracle access to
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both F and G 8. More precisely, let r ∈ {0, 1}k be the public randomness used
by the generating algorithm for a family of hash functions, and let M ? be the
evaluation algorithm. I.e., MG(r, ·) is the hash function specified by r. Assume
that MG

r (·) � MG(r, ·) maps {0, 1}�(k)+1 to {0, 1}�(k), where � is a function that
does not expand or shrink the input by more than a polynomial amount. We
will show how to find x and y of length �(k) + 1 such that MG

r (x) = MG
r (y).

An immediate attempt is to query F(M ?
r , 1�(k)), but notice that MG

r may
query hα for arbitrary α 9, which prevents F from finding a collision for us.
However, these α are likely to be invalid, and hence oracle answers to these
queries are likely to be 0|α|. So we can construct a machine M̃ ?

r that behaves
“similar” to M ?

r but only after getting α from g does it query hα. And instead of
finding collision for MG

r , we find collision for M̃G
r , which can be done by simply

querying F (M̃ ?
r , 1�(k)).

Suppose the running time of MG
r is bounded by kc for some constant c > 1.

Before simulating MG
r , M̃G

r queries g on all inputs of length smaller than or equal
to 4c log k. This takes 2k4c steps. Now M̃G

r simulates MG
r step by step, except

for queries to hα. If α is the answer to one of the queries M̃G
r already asked of G

(either before the beginning of the simulation or when simulating MG
r ), then M̃G

r

actually queries hα. Else it returns 0|α| as the answer to MG
r without querying

hα.
Now fix r and x. For every M ? the probability, over random G, that M̃G

r (x) 
=
MG

r (x) is at most the probability, over G, that MG
r queries hα for some valid α of

length greater than 8c log k without receiving it from g 10. Consider the very first
time that MG

r makes such a “long” valid query. Let ng be the number of queries
to g on inputs longer than 4c log k, and nh be the number of invalid queries
to h prior to this point. Then the probability in question is upper bounded by
kc · k4c−ng−nh

k8c−ng
, which is at most 1/k3c. For every fixed G and r, call an x “bad”

if M̃G
r (x) 
= MG

r (x). We have

Ex
G

[Pr
x

[x is bad]] = Pr
G,x

[x is bad] ≤ 1/k3c.

Next, notice that there are at most half of x that have no collisions, and F
would pick its answer (xF, yF), uniformly, from those points that have a collision.
So for a fixed G, the probability over F that xF is bad is at most twice the
probability over random x ∈ {0, 1}�(k)+1 that x is bad. Also recall that the
distribution of yF is the same as xF. So for every M ?,

Ex
G

[Pr
F

[at least one of (xF, yF) is bad]] ≤ 4 ·Ex
G

[Pr
x

[x is bad]].

If none of (xF, yF) is bad, this pair would be a collision not only for M̃G
r but also

for MG
r . We have

Pr
F,G,r

[(xF, yF) is not a collision of MG
r ] ≤ 4 Pr

G,x,r
[x is bad] ≤ 4/k3c,

8 In fact, only F is needed to find a collision.
9 In particular, those α not obtained by previously querying g.

10 Recall that g is length-doubling.
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then
Pr
F,G

[Pr
r

[(xF, yF) is not a collision of MG
r ] ≥ 4/kc] ≤ 1/k2c.

Since
∑

k 1/k2c converges, the Borel-Cantelli lemma implies that for only
measure zero of F and G, can we have Prr[(xF, yF) is not a collision of MG

r ] ≥
4/kc for infinitely many k. In other words, for measure one of F and G,
Prr[(xF, yF) is a collision of MG

r ] ≥ 4/kc for all large enough k. There are only
countably many oracle machines M ?, each of which can be collision resistant for
only measure zero of F and G. We conclude the following.

Lemma 3. For measure one of F and G, any implementation of public-coin
hash function families using G cannot be collision-resistant against adversaries
using F.

This concludes the proof of Theorem 2.

5 Public Coins vs. Secret Coins for Other Primitives

Perhaps the lack of attention in the literature to the distinction between secret-
and public-coin primitives is due, in part, to the fact that this distinction is often
not meaningful.

For example, for one-way function families, these two notions are equivalent,
because a secret-coin one-way function family implies a single one-way function
(which trivially implies a public-coin one-way function family). Indeed, take
the generating algorithm g and evaluation algorithm f and define F (r, x) �
(g(r), fg(r)(x)); this is one-way because an adversary who can come up with
(r′, x′) such that g(r) = g(r′) and fg(r′)(x′) = fg(r)(x) can be directly used to
invert fg(r)(x), since fg(r)(x′) = fg(r′)(x′) = fg(r)(x).

On the other hand, for trapdoor permutations (and public-key schemes),
the notion of public-coin generation is meaningless: indeed the trapdoor (or the
secret key) must be kept secret.

However, it seems that this distinction is interesting for some primitives in ad-
dition to collision-resistant hash functions. The relationships between public-coin
and secret-coin versions of one-way permutation families and claw-free permuta-
tion families are unknown11. In particular, claw-free permutations are related to
collision-resistant hashing [Dam87,Rus95], which suggests that the distinction
for claw-free permutations is related to the distinction for CRHFs.

Acknowledgments. We thank Yael Tauman Kalai for many helpful discus-
sions, and Ron Rivest for assistance with the history of hashing. Thanks also to
the anonymous referees for insightful comments. This work was funded in part
by the National Science Foundation under Grant No. CCR-0311485.

11 We believe that the same construction of F and G (up to slight modifications) sepa-
rates public-coin and secret-coin one-way permutation families.
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