Skip to main content

Some Meet-in-the-Middle Circuit Lower Bounds

  • Conference paper
Mathematical Foundations of Computer Science 2004 (MFCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3153))

Abstract

We observe that a combination of known top-down and bottom-up lower bound techniques of circuit complexity may yield new circuit lower bounds.

An important example is this: Razborov and Wigderson showed that a certain function f in ACC 0 cannot be computed by polynomial size circuits consisting of two layers of MAJORITY gates at the top and a layer of AND gates at the bottom. We observe that a simple combination of their result with the HÃ¥stad switching lemma yields the following seemingly much stronger result: The same function f cannot be computed by polynomial size circuits consisting of two layers of MAJORITY gates at the top and an arbitrary AC 0 circuit feeding the MAJORITY gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require superlogarithmic depth. SIAM Journal on Discrete Mathematics 3, 255–265 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational Complexity 1, 113–129 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01, Department of Computer Science and Engineering, University of Washington (1994), Availible online at www.cs.washington.edu/homes/beame

  4. Berg, C., Ulfberg, S.: A lower bound for perceptrons and an oracle sepration of the PPPH hierarchy. Journal of Computer and System Sciences 56, 263–271 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldmann, M.: On the power of a threshold gate at the top. Information Processing Letters 63, 287–293 (1997)

    Article  MathSciNet  Google Scholar 

  6. Krause, M., Pudlák, P.: Computing boolean functions by polynomials and threshold circuits. Computational Complexity 7, 346–370 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory 17, 13–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. HÃ¥stad, J.: Computational limitations of small-depth circuits. MIT Press, Cambridge (1987)

    Google Scholar 

  9. Razborov, A., Wigderson, A.: nΩ(log n) lower bounds on the size of depth-3 threshold circuits with AND gates at the bottom. Information Processing Letters 45, 303–307 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Razborov, A.A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55, 24–35 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhang, Z.L., Barrington, D.A.M., Tarui, J.: Computing symmetric functions with AND/OR circuits and a single MAJORITY gate. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 535–544. Springer, Heidelberg (1993)

    Google Scholar 

  12. Tsai, S.C.: Lower bounds on representing Boolean functions as polynomials in Zm. SIAM Journal on Discrete Mathematics 9, 55–62 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Aspnes, J., Beigel, R., Furst, M., Rudich, S.: The expressive power of voting polynomials. Combinatorica 14, 1–14 (1994)

    Article  MathSciNet  Google Scholar 

  14. Beigel, R.: When do extra majority gates help? Polylog(n) majority gates are equivalent to one. Computational Complexity 4, 314–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Barrington, D.A.M., Straubing, H.: Complex polynomials and circuit lower bounds for modular counting. Computational Complexity 4, 325–338 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Barrington, D.A.M., Beigel, R., Rudich, S.: Representing Boolean functions as polynomials modulo composite numbers. Computational Complexity 4, 367–382 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Green, F.: A complex-number fourier technique for lower bounds on the mod-m degre. Computational Complexity 9, 16–38 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tarui, J.: Degree complexity of Boolean functions and its applications to relativized separations. In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference, pp. 382–390. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

  19. Vollmer, H.: Relating polynomial time to constant depth. Theoretical Computer Science 207, 159–170 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Torán, J.: Complexity classes defined by counting quantifiers. Journal of the ACM 38, 753–774 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, K.A., Miltersen, P.B. (2004). Some Meet-in-the-Middle Circuit Lower Bounds. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds) Mathematical Foundations of Computer Science 2004. MFCS 2004. Lecture Notes in Computer Science, vol 3153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28629-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28629-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22823-3

  • Online ISBN: 978-3-540-28629-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics