
All Superlinear Inverse Schemes are coNP-Hard∗

Edith Hemaspaandra†

Department of Computer Science
Rochester Institute of Technology
Rochester, NY 14623-5608, USA

Lane A. Hemaspaandra‡

Department of Computer Science
University of Rochester

Rochester, NY 14627-0226, USA

Harald Hempel§

Institut für Informatik
Friedrich-Schiller-Universität Jena

D-07743 Jena, Germany

Technical Report URCS-TR-2004-841
July 16, 2004

Abstract

How hard is it to invert NP-problems? We show that all superlinearly certified
inverses of NP problems are coNP-hard. As part of our work we develop a novel proof
technique that builds diagonalizations against certificates directly into a circuit.

Keywords: inverse problems, certificates, coNP-hardness, NP, P-producible sets,
complexity theory.

1 Introduction

In this paper we show that all superlinear inverse schemes of NP problems are coNP-
hard. We develop a novel proof technique that allows us to diagonalize against all possible
certificate sets. We feel that this “in-circuit diagonalization” proof technique is of interest
in its own right.

The class NP can be viewed as the set of all languages L such that there exist a
polynomial-time computable verifier V and a polynomial q such that, for all x ∈ Σ∗,
x ∈ L ⇐⇒ (∃y ∈ Σ∗)[|y| = q(|x|) ∧ V (x, y) accepts]. A string y such that V (x, y)
accepts is called a certificate or proof for x. Verifiers can formally be defined as follows (see
Definition 2.3):

∗Supported in part by grants NSF-CCR-9322513, NSF-INT-9815095/DAAD-315-PPP-gü-ab, and NSF-
CCR-0311021.

†eh@cs.rit.edu.
‡lane@cs.rochester.edu.
§hempel@informatik.uni-jena.de. Work done while visiting the University of Rochester.

1

A pair (V, q) is called a standard verifier if and only if

1. V : Σ∗×Σ∗ → {0, 1} is polynomial-time computable mapping, i.e., V ∈ FP
and

2. q : N → N is a strictly monotonic, integer-coefficient polynomial such that

(∀x, y ∈ Σ∗)[V (x, y) = 1 =⇒ |y| = q(|x|)].

Inverting standard verification schemes can now informally be described as follows: Let
(V, q) be a standard verifier. Given a set of certificates C, does there exist a string x
such that C is exactly the set of certificates for x (relative to (V, q))? It is quite natural
to choose a succinct representation of certificates in form of a circuit. This leads to the
following definition (see Definition 2.5) of the inverse problem, which basically asks if a set
of strings specified by a circuit is such that some string has precisely those strings as its
certificate set.

Let (V, q) be a standard verifier.
InvsV,q = {c | c encodes a circuit c′ having q(m) inputs for some m ∈ N such
that (∃x ∈ Σm)[{w ∈ Σq(m) | V (x, w) = 1} = {y ∈ Σq(m) | c′(y) = 1}]}.

We show that inversion for all superlinear standard verification schemes is coNP-hard.
In fact we show even more, namely, that inverting any standard verification scheme (V, q)
where q grows faster than all outright linear functions n + k, k ∈ N, is coNP-hard (see
Theorem 3.2). So coNP-hardness in fact holds for all InvsV,q where (V, q) is a standard
verification scheme and q is a polynomial of degree either greater than one or of degree one
with a degree-one-coefficient a1 > 1.

The proof of our main result is based on a proof technique that can informally be
described as an “in-circuit diagonalization” against possible certificate sets. In particular,
our in-circuit diagonalization technique uses a circuit to diagonalize against certificate sets
that are potentially accepted by the very same circuit. The need to diagonalize in such an
unusual way arises from the fact that when reducing SAT to InvsV,q (as we will do in the
proof of Theorem 3.2) one has to map boolean formulas to circuits such that the following
holds: If the formula is satisfiable then, for all x, the set of strings accepted by the circuit is
not equal to the set of certificates for x (relative to (V, q)). If the formula is not satisfiable
then there exists a string x such that the the set of strings accepted by the circuit is exactly
the set of certificates for x (relative to (V, q)).

Relatedly, Σp
2 is clearly an upper bound for the complexity of inverting standard verifi-

cation schemes and we prove that this upper bound is optimal by constructing a standard
verifier such that its inversion problem is Σp

2-complete (see Theorem 3.7). As an interesting
corollary of this construction we obtain that there exists a P set A and a standard verifier
(V, q) for A such that InvsV,q is Σp

2-complete.
Our results can be extended to also hold for the one-sided variant of inversion of ver-

ification schemes, 1-InvsV,q. The difference in the definitions of InvsV,q and 1-InvsV,q (see

2

Definition 2.5) is that instead of requiring “∃x ∈ Σ∗ such that the set of strings accepted by
the circuit equals the set of certificates of x” as in definition of InvsV,q, we instead require
“∃x ∈ L(V, q) such that the set of strings accepted by the circuit equals the set of certificates
of x” in the definition of 1-InvsV,q.

In a fascinating paper by Chen [Che03], a type of inversion of NP problems is studied
that is somewhat related to the above-described one-sided-inversion problem, 1-InvsV,q,
and Σp

2 results are obtained. However, the models are different; for example, in contrast to
our definition, where certificates are given in a very succinct form, i.e., implicitly in form
of a circuit, Chen studied one-sided inversions of NP problems where the certificates are
explicitly given, i.e., in form of a set or a list, and also Chen’s focus is on the one-sided
inversion problem.

Our paper is organized as follows. After formally defining the basic concepts in Section 2,
in Section 3 we state and prove our main result—that all superlinearly certified inverses
are coNP-hard. In Section 3 we also prove a number of related theorems, in particular
the optimality of the Σp

2 upper complexity bound for InvsV,q. In Section 4, we turn to
the complexity of recognizing whether machines compute verifiers and we establish Σ0

2-
completeness results on this.

2 Preliminaries

We assume the reader to be familiar with the basic definitions and concepts of complexity
theory (see [Pap94, HO02]). Let Σ = {0, 1} be our alphabet. We denote the set of natural
numbers and integers by N and Z, respectively. We say a polynomial p is strictly monotonic
(by which we always mean strictly monotonically increasing) if, for all n ∈ N, p(n+1) > p(n).
For any set A and any m ∈ N, A=m denotes {z | z ∈ A ∧ |z| = m}.

Without defining it formally we will make use of a nice (i.e., polynomial-time computable
and polynomial-time invertible) encoding of any boolean circuit (consisting of AND, OR
and NOT gates) as a word over the alphabet Σ. As is standard, we denote the outcome (0
or 1, representing reject/false and accept/true) of a circuit c on input x by c(x).

Let FP denote the set of all polynomial-time computable functions, where these functions
without loss of generality can be of any fixed arity. We will use the following standard
complexity classes.

Definition 2.1 1. P is the set of all languages that can be accepted in deterministic
polynomial time.

2. NP is the set of all languages that can be accepted in nondeterministic polynomial
time. coNP is defined to be the set of all languages A such that A ∈ NP.

3. [PY84] DP is the set of all languages L such that there exist NP sets A and B
satisfying L = A − B.

3

4. [MS72, Sto76] Σp
2 is the set of all languages that can be accepted by nondeterministic

polynomial-time Turing machines with the help of an NP oracle; Σp
2 = NPNP. Let PH

denote the polynomial hierarchy, PH = P ∪ NP ∪ NPNP ∪ NPNPNP ∪ · · · .

We mention in passing that P, NP, and DP are the low levels of the boolean hier-
archy [CGH+88, CGH+89] and that P, NP, and Σp

2 are the low levels of the polynomial
hierarchy [MS72, Sto76].

Let REC denote the set of all recursive languages. The second level of the arithmetic
hierarchy Σ0

2 is defined as follows.

Definition 2.2 (see [Rog67]) A language L is in Σ0
2 if and only if there exists a language

B ∈ REC such that for all x ∈ Σ∗,

x ∈ L ⇐⇒ (∃y ∈ Σ∗)(∀z ∈ Σ∗)[〈x, y, z〉 ∈ B],

where 〈·, ·, ·〉 here is a standard, nice 3-ary pairing function.

As is standard we will use ≤m (respectively, ≤p
m) to denote recursive many-one reduc-

tions (respectively, polynomial-time many-one reductions) between languages.
In the following we will define the basic concepts that allow us to study inverse NP

problems.

Definition 2.3 1. A pair (V, q) is called a standard verifier if and only if

(a) V : Σ∗ × Σ∗ → {0, 1} is polynomial-time computable mapping, i.e., V ∈ FP and

(b) q : N → N is a strictly monotonic, integer-coefficient polynomial such that

(∀x, y ∈ Σ∗)[V (x, y) = 1 =⇒ |y| = q(|x|)].

2. We say that (V, q) is a standard verifier for a language L if and only if (V, q) is a
standard verifier and L = L(V, q), where L(V, q) = {x ∈ Σ∗ | (∃y ∈ Σ∗)[|y| =
q(|x|) ∧ V (x, y) = 1]} (equivalently, L(V, q) = {x ∈ Σ∗ | (∃y ∈ Σ∗)[V (x, y) = 1]}).

3. We say a 2-ary Turing machine M computes a standard verifier if there are a poly-
nomial r and a polynomial q such that

(a) M runs in r-bounded time (by which we mean that for each x, y ∈ Σ∗, M(x, y)
halts in at most r(|x| + |y|) steps), and

(b) q : N → N is a strictly monotonic, integer-coefficient polynomial such that

(∀x, y ∈ Σ∗)[χL(M)(x, y) = 1 =⇒ q(|y|) = |x|].

(Note: Regarding types, L(M) ⊆ Σ∗ × Σ∗, and χL(M)—the characteristic
function—maps from Σ∗ × Σ∗ to {0, 1}.)

4

The following two facts are immediate and standard.

Fact 2.4 1. For every set A ∈ NP there exists a standard verifier (V, q) such that (V, q)
is a standard verifier for A.

2. If (V, q) is a standard verifier for a language L then L ∈ NP.

We now define the inverse problem for NP languages.

Definition 2.5 Let A ∈ NP and let (V, q) be a standard verifier for A.

1. InvsV,q = {c | c encodes a circuit c′ having q(m) inputs for some m ∈ N such that
(∃x ∈ Σm)[{w ∈ Σq(m) | V (x, w) = 1} = {y ∈ Σq(m) | c′(y) = 1}]}.

2. 1-InvsV,q = {c | c encodes a circuit c′ having q(m) inputs for some m ∈ N such that
(∃x ∈ A=m)[{w ∈ Σq(m) | V (x, w) = 1} = {y ∈ Σq(m) | c′(y) = 1}]}.

It is not hard to see that for standard verifiers (V, q), InvsV,q and 1-InvsV,q are both
always in Σp

2. However InvsV,q and 1-InvsV,q seem to differ with respect to their complexity
lower bounds.

Proposition 2.6 There is a set A ∈ NP such that for all standard verifiers (V, q) for A,
1-InvsV,q ∈ P.

One proof is by simply choosing A to be ∅ or any other finite set. In contrast, for every
standard verifier (V, q) for ∅ we have that InvsV,q is ≤p

m -complete for coNP.

Proposition 2.7 Let (V, q) be a standard verifier for ∅. Then InvsV,q is ≤p
m -complete for

coNP.

The claim follows from the fact that from (V, q) being a standard verifier for ∅ the set
InvsV,q is essentially the set of all appropriate-number-of-inputs circuits that for no input
evaluate to 1, and is easily seen to be in coNP. Also, it is straightforward to reduce the
coNP-complete language SAT to InvsV,q.

3 Inverting NP Problems is coNP-complete

Before stating our main theorem we need a technical definition.

Definition 3.1 A polynomial q is called miserly if and only if for all ε > 0 there exist
infinitely many n ∈ N such that q(n) ≤ (1 + ε)n.

Note that for strictly monotonic polynomials p, p(n) = akn
k +ak−1n

k−1 + · · ·+a1n+a0,
with ak > 0, we have that p is nonmiserly if and only if either a) k ≥ 2 or b) k = 1 and
a1 > 1.

5

Theorem 3.2 Let A ∈ NP and (V, q) be a standard verifier for A such that q is a non-
miserly polynomial. Then InvsV,q is ≤p

m -hard for coNP.

This immediately yields the following, where by “nonmiserly standard verifier” we mean
a standard verifier whose second component is a nonmiserly polynomial.

Corollary 3.3 No nonmiserly standard verifier for an NP set has an inverse problem be-
longing to NP, unless NP = coNP.

Proof of Theorem 3.2: Let A ∈ NP and let (V, q) be a standard verifier for A. Suppose
that q is nonmiserly. We will show that SAT ≤p

m InvsV,q.
Let F be a formula and suppose that F has n variables. Our reduction g will map F

to the encoding c = g(F) of a circuit c′. The circuit c′ will have q(n′) inputs where n′

is the smallest natural number such that q(n′) > n + n′. Note that since q is nonmiserly
n′ is linearly related to n and can be found in polynomial time. On input z ∈ {0, 1}q(n′),
let x, α, and r be the unique strings such that z = xαr, x ∈ {0, 1}n′

, α ∈ {0, 1}n, and
r ∈ {0, 1}q(n′)−n′−n. The circuit c′ consists of three subcircuits that work as follows:

Subcircuit 1: Subcircuit 1 simulates the work of V (x, z). Let a = V (x, z) be the output
of subcircuit 1.

Subcircuit 2: Subcircuit 2 is a polynomial-size-bounded circuit for F with α as its input.
Let b = F (α) be the output of subcircuit 2.

Subcircuit 3: Subcircuit 3 simulates the work of V (0n′
, z). Let d = V (0n′

, z) be the output
of subcircuit 3.

Output of c′: c′ outputs 0 if b = d = 0 or a = b = 1. c′ outputs 1 otherwise, that is if
either a) b = 0 and d = 1 or b) b = 1 and a = 0.

It is obvious that c′ and thus also c can be constructed in time polynomial in |F |.
It remains to show that for all formulas F , F ∈ SAT ⇐⇒ g(F) ∈ InvsV,q. Suppose

that F ∈ SAT. So we have for all inputs z to the circuit c′, b = 0. Thus, for all inputs
z, c′(z) = 1 if and only if d = 1. By construction d = 1 if and only if V (0n′

, z) = 1.
It follows that {z ∈ Σq(n′) | c′(z) = 1} = {y ∈ Σq(n′) | V (0n′

, y) = 1} and so (via
the certificates of 0n′

) c = g(F) ∈ InvsV,q. For the other direction of the equivalence
to be shown assume F /∈ SAT. So there exists an n-bit assignment α̂ for F such that
F (α̂) = 1 and consequently for all inputs z to the circuit c′ such that z = xα̂r with
x ∈ {0, 1}n′

and r ∈ {0, 1}q(n′)−n′−n, we have b = 1. It follows that for all x ∈ {0, 1}n′
there

exists some input z′ to the circuit, namely z′ = xα̂0q(n′)−n′−n, such that (a) c′(z′) = 0 if
a = V (x, z′) = 1 and (b) c′(z′) = 1 if a = V (x, z′) = 0. It follows that for all x ∈ {0, 1}n′

,
{z ∈ Σq(n′) | c′(z) = 1} �= {y ∈ Σq(n′) | V (x, y) = 1}, and so g(F) /∈ InvsV,q. ❑

Since by our remark preceding Theorem 3.2 any superlinear polynomial is nonmiserly,
we have the following corollary.

6

Corollary 3.4 Let A ∈ NP and let (V, q) be a standard verifier for A such that q is a
superlinear polynomial. Then InvsV,q is ≤p

m -hard for coNP.

Before we can state a similar result for 1-InvsV,q we need a technical concept. Though
as far as we know it is a new concept, we feel it is also a very natural concept. We will call
this notion P-producibility. (In choosing the nomenclature, we are motivated by the term
and notion of “self-P-producible cicuits” [Ko85, BB86, GW93].)

Definition 3.5 We say a set A is P-producible if and only if there exists a function h ∈ FP
such that for all x ∈ Σ∗, |h(x)| ≥ |x| and h(x) ∈ A.

Our definition of P-producibility should be contrasted (especially as to what the polynomial
time is in relation to—the input or the output) with the notion of tangibility introduced by
Hemachandra and Rudich [HR90].1

Theorem 3.6 Let A be any NP set that is P-producible. Let (V, q) be a standard verifier
for A such that q is a nonmiserly polynomial. Then 1-InvsV,q is ≤p

m -hard for coNP.

Proof: Let A be an NP set that is P-producible via a function h ∈ FP. Let (V, q) be a
standard verifier for A such that q is a nonmiserly polynomial.

The proof proceeds quite similarly to the proof of Theorem 3.2. Let F be a formula with
n variables. Let n′ be the smallest natural number such that q(n′) > n + n′. The difference
from the proof of Theorem 3.2 is that the constructed circuit c′ has to be modified as follows:
Let w = h(0n′+1). c′ will have q(|w|) inputs. On input z ∈ {0, 1}q(|w|), let z = xαr where
x ∈ {0, 1}|w|, α ∈ {0, 1}n, and r ∈ {0, 1}q(|w|)−|w|−n, the circuit works as follows (note the
natural adjustment in Subcircuit 3).

Subcircuit 1: Subcircuit 1 simulates the work of V (x, z). Let a = V (x, z) be the output
of subcircuit 1.

Subcircuit 2: Subcircuit 2 is a polynomial-size-bounded circuit for F and uses α as its
input. Let b = F (α) be the output of subcircuit 2.

Subcircuit 3: Subcircuit 3 simulates the work of V (w, z). Let d = V (w, z) be the output
of subcircuit 3.

Output of c′: c′ outputs 0 if b = d = 0 or a = b = 1. c′ outputs 1 otherwise, that is if
either a) b = 0 and d = 1 or b) b = 1 and a = 0.

The correctness of the reduction can be shown as in the proof of Theorem 3.2, where w
now plays the role that 0n′

played in the proof of Theorem 3.2. ❑

In the reminder of this section we will derive some Σp
2-completeness results and a result

about membership in DP.
As already mentioned in Section 2, InvsV,q ∈ Σp

2 for all standard verifiers (V, q). We will
now show that this upper complexity bound is optimal.

1A set A is called tangible if and only if there exists a total function f that can be computed in time
polynomial in the size of its output such that for all x ∈ Σ∗, f(x) ∈ A and f(x) ≥lexicographical x.

7

Theorem 3.7 There exists a standard verifier (V, q) such that InvsV,q is Σp
2-complete.

Proof: Since InvsV,q ∈ Σp
2 for all standard verifiers (V, q), it suffices to show that there

exists a standard verifier (V, q) such that InvsV,q is Σp
2-hard.

Consider the language ∃∀3SAT,

∃∀3SAT = {F | F is a boolean formula in 3-DNF having 2n variables
x1, x2, . . . , xn and y1, y2, . . . , yn for some n ∈ N and
(∃α ∈ {0, 1}n)(∀β ∈ {0, 1}n)[F (α, β) = 1]},

where F (α, β) denotes the truth value of F when using α and β as assignments for the
variables x1, x2, . . . , xn and y1, y2, . . . , yn, respectively.

∃∀3SAT is known to be Σp
2-complete [Wra76]. Let encode be a polynomial-time

computable and polynomial-time invertible encoding function for boolean formulas in 3-
DNF. Let double be a mapping from {0, 1}∗ to {0, 1}∗ such that for all k ∈ N and all
a1, a2, . . . , ak ∈ {0, 1}, double(a1a2 . . . ak) = a1a1a2a2 . . . akak.

Let q(n) = n for all n ∈ N. We define the following verifier (V, q):

V accepts on input (u, v) if and only if there exist a natural number n, a
boolean formula F in 3-DNF with 2n variables x1, x2, . . . , xn, y1, y2, . . . , yn,
and strings α, β ∈ {0, 1}n such that u = encode(F)01double(α) and v =
encode(F)01double(β) and F (α, β) = 1.

It is not hard to see that (V, q) is a standard verifier.
To show that ∃∀3SAT ≤p

m InvsV,q we will map formulas F having the required syntac-
tic properties (3-DNF, even number of variables) to the encoding cF of a circuit—having
|encode(F)|+ 2n + 2 inputs—that accepts all strings of the form encode(F)01double(β) for
any β ∈ {0, 1}n and rejects all other strings. All other formulas, i.e., those formulas not in
3-DNF or having an odd number of variables, are mapped to the encoding c of a circuit that
accepts exactly one string, namely 0 (this ensures that if F does not have the the required
syntactic properties and thus F /∈ ∃∀3SAT, then c /∈ InvsV,q). The described reduction is
clearly polynomial-time computable.

It remains to show that for all formulas F having the above-mentioned syntactic prop-
erties (3-DNF, even number of variables) it holds that F ∈ ∃∀3SAT ⇐⇒ cF ∈ InvsV,q. Let
F ∈ ∃∀3SAT. It follows that there exists a partial assignment α ∈ {0, 1}n such that for all
partial assignments β ∈ {0, 1}n, F (α, β) = 1. Hence there exists u = encode(F)01double(α)
such that for all v = encode(F)01double(β), V (u, v) = 1. By construction of cF we thus
have cF ∈ InvsV,q. For the other implication assume F /∈ ∃∀3SAT. Hence for all α ∈ {0, 1}n

there exists β ∈ {0, 1}n such that F (α, β) = 0. It follows from the definition of V that for all
u = encode(F)01double(α) there exists v = encode(F)01double(β) such that V (u, v) = 0.
By construction of cF we thus have cF /∈ InvsV,q.

This completes the proof. ❑

8

Note that the verifier V defined in the proof of Theorem 3.7 is a verifier for the language
L of all strings w such that there exist a natural number n, a boolean formula F in 3-DNF
with 2n variables x1, x2, . . . , xn, y1, y2, . . . , yn, and a string α ∈ {0, 1}n such that

w = encode(F)01double(α) ∧ (∃β ∈ {0, 1}n)[F (α, β) = 1].

It is not hard to see that L ∈ P since satisfiability for 3-DNF formulas can be checked in
polynomial time.

Corollary 3.8 There exists a language L ∈ P and a standard verifier (V, q) for L such that
InvsV,q is Σp

2-complete.

In fact, looking carefully at the construction in the proof of Theorem 3.7, we see that
the just-given proof establishes also the following one-sided result.

Corollary (to the proof) 3.9 There exists a language L ∈ P and a standard verifier
(V, q) for L such that 1-InvsV,q is Σp

2-complete.

So even simple sets can have very hard inverse problems (Corollaries 3.8 and 3.9).
Nonetheless, all (NP) sets have at least one standard verifier whose one-sided inverse prob-
lem is not too hard, namely, it at least belongs to DP (note: if DP = Σp

2 then PH collapses
to DP).

Theorem 3.10 Every set A ∈ NP has a standard verifier (V, q) such that 1-InvsV,q ∈ DP.

Proof: Let A ∈ NP and let (R, p) be a standard verifier for A. Let q(n) = n + p(n) and
define a verifier V as follows:

V accepts on input (a, b) if and only if there exists a string b′ such that b = ab′

and R(a, b′) = 1.

It is not hard to see that (V, q) is a standard verifier for A.
By definition we have

1-InvsV,q = {c | c encodes a circuit c′ having q(m) inputs for some m ∈ N such that

(∃x ∈ A=m)[{w ∈ Σq(m) | V (x, w) = 1} = {y ∈ Σq(m) | c′(y) = 1}]}

This can be rewritten, keeping in mind the particular V we have defined, as follows.

1-InvsV,q = {c | c encodes a circuit c′ having q(m) inputs for some m ∈ N such that:

(∀u, v ∈ Σq(m))[if c′(u) = c′(v) = 1 then the first m bits of u and v are
identical] and

(∀u, v ∈ Σq(m))(∀x ∈ Σm)[if c′(u) = 1 and c′(v) = 0 and u = xu′ and v = xv′

then R(x, u′) = 1 and R(x, v′) = 0] and
(∀u ∈ Σq(m))(∀x ∈ Σm)[if c′(u) = 1 and u = xu′ then R(x, u′) = 1] and
(∃v ∈ Σq(m))[c′(v) = 1]}.

9

This rewritten version (keeping in mind that the quantification over m is not a “real”
quantifier) makes it clear that 1-InvsV,q ∈ DP, as it is of the form A ∩ B ∩ C ∩ D, with
A, B, C ∈ coNP and D ∈ NP, and so is of the form of the difference of two NP sets, namely,
D − (A ∩ B ∩ C). ❑

4 The Complexity of Recognizing Verifiers

In this section we show that deciding if a given machine computes a standard verifier is
complete for the second level of the arithmetic hierarchy, Σ0

2. Before doing so, we introduce
the notion of a “general verifier,” in which the “hit the length exactly” restriction on the
certificate size is changed to just a one-sided bound, and we prove a Σ0

2-completeness result
for that. We do so primarily since the proof for that case is clearer and so helps introduce
the related but more involved Σ0

2-completeness proof for the case of standard verifiers.

Definition 4.1 1. A pair (R, q) is called a general verifier if and only if

(a) R : Σ∗ × Σ∗ → {0, 1} is polynomial-time computable mapping, i.e., R ∈ FP and

(b) q : N → N is a strictly monotonic polynomial such that

(∀x, y ∈ Σ∗)[R(x, y) = 1 =⇒ q(|y|) ≥ |x|].

2. We say a 2-ary Turing machine M computes a general verifier if there are a polynomial
r and a polynomial q such that

(a) M runs in r-bounded time (by which we mean that for each x, y ∈ Σ∗, M(x, y)
halts in at most r(|x| + |y|) steps), and

(b) q : N → N is a strictly monotonic polynomial such that

(∀x, y ∈ Σ∗)[χL(M)(x, y) = 1 =⇒ q(|y|) ≥ |x|].

(Note: Regarding types, L(M) ⊆ Σ∗ × Σ∗, and χL(M)—the characteristic
function—maps from Σ∗ × Σ∗ to {0, 1}.)

Let M1, M2, M3, . . . be a standard enumeration of deterministic 2-ary Turing machines.

Theorem 4.2 The index set Iver,gen = {i ∈ N | Mi computes a general verifier} is ≤m-
complete for Σ0

2.

Proof: It is not hard to see that Iver,gen ∈ Σ0
2 since Iver,gen can be described as follows:

i ∈ Iver,gen ⇐⇒
(∃k ∈ N)(∀x, y ∈ Σ∗)[Mi(x, y) halts within at most (|x| + |y|)k + k steps and if
Mi(x, y) accepts within at most (|x| + |y|)k + k steps then |y|k + k ≥ |x|].

10

Note that the right hand side of the above “ ⇐⇒ ” shows membership in Σ0
2.

It remains to show that Iver,gen is ≤m-hard for Σ0
2. Since Ifinite = {i | L(Ni) is finite}

(where N1, N2, N3, . . . is a fixed standard enumeration of Turing machines, e.g., that of
Hopcroft–Ullman [HU79]) is ≤m-hard (even ≤m-complete) for Σ0

2 it suffices to show that
Ifinite ≤m Iver,gen. Given (as input to our reduction) any i ∈ N, by the nice properties
of the standard enumeration, we can effectively construct from i a machine E that is an
enumerator for L(Ni). We now describe a Turing machine M̂ . M̂ is a 2-ary Turing machine
that on input (x, y) ∈ Σ∗ × Σ∗ does the following steps:

1. Simulate |x| + |y| steps of the work of E and let A be the set of all strings that are
enumerated by E within those |x| + |y| steps.

2. Simulate 2(|x|+ |y|) steps of the work of E and let B be the set of all strings that are
enumerated by E within those 2(|x| + |y|) steps.

3. Accept (i.e., output true) if B − A �= ∅; otherwise reject (i.e., output false).

Clearly, M̂ is a 2-ary Turing machine. Let j be an index such that Mj = M̂ (we assume our
standard enumeration is expansive enough to include all the obviously 2-ary, deterministic
machines created by this construction—this is a legal assumption). Since j clearly depends
only on i we have implicitly described a mapping f : N → N. Note that f is computable.

It suffices to show that for all i ∈ N, i ∈ Ifinite ⇐⇒ f(i) ∈ Iver,gen. Let i ∈ N and let
j = f(i).

Case 1: i ∈ Ifinite. So L(Ni) is finite and the number of strings enumerated by E
is finite as well. Note that since Mj by definition runs in polynomial time and since E
enumerates only a finite number of strings it follows from the construction of Mj that Mj

accepts only a finite number of inputs and thus it holds that there exists a strictly monotonic
(integer-coefficient) polynomial p such that for all x, y ∈ Σ∗, if Mj(x, y) outputs true then
p(|y|) ≥ |x|. So (remembering also the polynomial-time claim made above) Mj computes a
general verifier and thus j ∈ Iver,gen.

Case 2: i /∈ Ifinite. In this case, E enumerates an infinite number of strings and thus
for all y ∈ Σ∗, Mj(x, y) outputs true for infinitely many x ∈ Σ∗. So there does not exist a
(strictly monotonic) polynomial p such that, for all x, y ∈ Σ∗, if Mj(x, y) outputs true then
p(|y|) ≥ |x|. Thus, Mj does not compute a general verifier and so j /∈ Iver,gen. ❑

Does the same classification hold for standard verifiers? Note that the “hit the length on
the head”-ness of standard verifiers will be something of a technical obstacle. Nonetheless,
by carefully choosing the pairs (x, y) that are accepted by the constructed machine we are
able to show that deciding whether a given machine computes a standard verifier is also
complete for Σ0

2.

Theorem 4.3 The index set Iver,std = {i ∈ N | Mi computes a standard verifier} is
≤m-complete for Σ0

2.

Proof: It is not hard to see that Iver,std ∈ Σ0
2 since Iver,std can be described as follows:

i ∈ Iver,std ⇐⇒

11

(∃k ∈ N)(∃� ∈ N)(∃a0, a1, a2, . . . a� ∈ Z)(∀x, y ∈ Σ∗)(∀n ∈ N)[(Mi(x, y) halts
within at most (|x| + |y|)k + k steps and if Mi(x, y) accepts within at most
(|x|+ |y|)k +k steps then |y| = a�|x|� +a�−1|x|�−1 + · · ·+a1|x|+a0]) and (a�n

� +
a�−1n

�−1 + · · ·+ a1n + a0 < a�(n + 1)� + a�−1(n + 1)�−1 + · · ·+ a1(n + 1) + a0)].

Note that the right hand side of the above “ ⇐⇒ ” shows membership in Σ0
2.

It remains to show that Iver,std is ≤m-hard for Σ0
2. As in the proof of Theorem 4.2, it

suffices to show that Ifinite ≤m Iver,std.
Before we describe the reduction we need a few technical definitions. We define a family

of polynomials as follows:
q0(n) = n + 1,

and, for each i ∈ {1, 2, 3, . . .}, we inductively define

qi+1(n) = n(n − 1)(n − 2) . . . (n − i) + qi(n).

Note that, for all i ∈ N, (a) i! ≤ qi(i) and (b) qi is a strictly monotonic, integer-coefficient
polynomial. Observe that the polynomials qi and the numbers mi satisfy the following:

1 = q0(0) = q1(0) = q2(0) = q3(0) = q4(0) = q5(0) = . . .
3 = q1(1) = q2(1) = q3(1) = q4(1) = q5(1) = . . .
7 = q2(2) = q3(2) = q4(2) = q5(2) = . . .
...

. . .
mi = qi(i) = qi+1(i) = qi+2(i) = . . .
...

. . .

We return to showing that Ifinite ≤m Iver,std. So, suppose that we are given any i ∈ N

(and we wish to effectively compute a string f(i) such that i ∈ Ifinite ⇐⇒ f(i) ∈ Iver,std).
By the nice properties of the standard enumeration, we can effectively construct from i a
machine E that is an enumerator for L(Ni). We now describe a Turing machine M̂ . M̂ is
a 2-ary Turing machine that on input (x, y) ∈ Σ∗ × Σ∗ does the following steps:

1. If |y| �= q|x|(|x|) halt and reject the input (i.e., output false). If |y| = q|x|(|x|) continue.

2. Simulate |x| + |y| steps of the work of E and let A be the set of all strings that are
enumerated by E within those |x| + |y| steps.

3. Simulate (|x|+ |y|)2 steps of the work of E and let B be the set of all strings that are
enumerated by E within those (|x| + |y|)2 steps.2

4. Accept (i.e., output true) if B − A �= ∅; otherwise reject (i.e., output false).
2The reason we use the bound (|x|+ |y|)2, rather than 2(|x|+ |y|) as we did in the proof of Theorem 4.2,

will be explained later in this proof.

12

Clearly, M̂ is a 2-ary Turing machine. Let j be an index such that Mj = M̂ (we assume our
standard enumeration is expansive enough to include all the obviously 2-ary, deterministic
machines created by this construction—this is a legal assumption). Since j clearly depends
only on i we have implicitly described a mapping f : N → N. Note that f is computable.

It suffices to show that for all i ∈ N, i ∈ Ifinite ⇐⇒ f(i) ∈ Iver,std. Let i ∈ N and let
j = f(i).

Case 1: i ∈ Ifinite. So L(Ni) is finite and the number of strings enumerated by E
is finite as well. Note that since Mj by definition runs in polynomial time and since E
enumerates only a finite number of strings it follows from the construction of Mj that Mj

accepts only a finite number of inputs. So it holds that there exists a strictly monotonic
(integer-coefficient) polynomial p such that for all x, y ∈ Σ∗, if Mj(x, y) outputs true then
p(|x|) = |y|. In particular, by our definition of the polynomials qi (and remembering also the
polynomial-time claim made above) we have that if n̂ ∈ N is the largest number such that
a pair (x, y), |x| = n̂, is accepted by Mj then (|y| = qn̂(n̂) and) Mj computes a standard
verifier (with qn̂ working as the “q” of Part 3 of Definition 2.3).

Case 2: i /∈ Ifinite. In this case, E enumerates an infinite number of strings. We will
argue that then Mj accepts an infinite number of pairs and thus there does not exist a
polynomial p such that for all pairs (x, y) ∈ L(Mj) we have |y| = p(|x|). Note that the
Turing machine Mj described above accepts only pairs (x, y) where |y| = q|x|(|x|) and thus
one might worry that even though E enumerates an infinite set, Mj only accepts finitely
many pairs. Indeed, observe that if we had (as in the proof of Theorem 4.2) chosen the
number of steps E is simulated in steps 2 and 3 of the description of Mj to be, respectively,
|x|+ |y| and 2(|x|+ |y|), we would have left coverage “gaps,” and it might happen that even
though E enumerates an infinite set, Mj would be “triggered” to accept pairs only a finite
number of times. However, by choosing the number of steps the enumerator E is simulated
by Mj to be |x| + |y| and (|x| + |y|)2 in, respectively, steps 2 and 3, it follows3 that if E
enumerates an infinite set then Mj accepts infinitely many pairs. So Mj(0n, 0qn(n)), when
i �∈ Ifinite, outputs true for infinitely many n ∈ N. Recall that by definition we have that for
all n ∈ N, n! ≤ qn(n). So there does not exist a polynomial p (whether strictly monotonic
or otherwise) such that, for all x, y ∈ Σ∗, if Mj(x, y) outputs true then p(|x|) = |y|. Thus,
Mj does not compute a standard verifier, and so j /∈ Iver,std. ❑

3Keeping in mind that the only interesting case is when the second argument’s length, call it �2, is related
to the first argument’s length, call it �1, by the equation �2 = q�1(�1), what we need to show to ensure that
there are only finitely many gaps in coverage is that for all but at most a finite number of n’s (and only
focusing in this footnote on second arguments y of the length-relation just mentioned) the simulation-step
bound in Step 3 when |x| = n is greater than the simulation-step bound in Step 2 when |x| = n + 1.
That is, we need it to hold that, for all sufficiently large n ∈ N, (n + qn(n))2 ≥ (n + 1) + qn+1(n + 1).
Regarding the right-hand side, note that we can inductively see from the definition of the qi’s that, for all
n ∈ N, qn+1(n + 1) ≤ ((n + 1)!)(n + 2). And by the lower bound given earlier for qn(n), we know also
that, for all n ∈ N, (n + qn(n))2 ≥ (n + (n!))2 = n2 + 2n(n!) + (n!)2. We thus are done, since clearly
for all sufficiently large n ∈ N it holds that (note the asymptotically very large (n!)2 term of the former)
n2 + 2n(n!) + (n!)2 ≥ (n + 1) + ((n + 1)!)(n + 2).

13

5 Conclusions

We have shown that all superlinear inversion schemes are coNP-hard. We have also shown
that some inversion schemes are Σp

2-complete. Note that for finite sets A and any of their
standard verifiers (V, q) we have that InvsV,q is coNP-complete. It is not clear whether the
complexity of inverting standard verifiers for infinite NP sets is also independent of the
verifier. In particular, does every infinite NP set have a standard verifier (V, q) such that
InvsV,q is Σp

2-complete?

References

[BB86] J. Balcázar and R. Book. Sets with small generalized Kolmogorov complexity.
Acta Informatica, 23(6):679–688, 1986.

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-
ner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM
Journal on Computing, 17(6):1232–1252, 1988.

[CGH+89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-
ner, and G. Wechsung. The boolean hierarchy II: Applications. SIAM Journal
on Computing, 18(1):95–111, 1989.

[Che03] H. Chen. Inverse NP problems. In Proceedings of the 28th International Sym-
posium on Mathematical Foundations of Computer Science, pages 338–347.
Springer-Verlag Lecture Notes in Computer Science #2747, August 2003.

[GW93] R. Gavaldà and O. Watanabe. On the computational complexity of small de-
scriptions. SIAM Journal on Computing, 22(6):1257–1274, 1993.

[HO02] L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion.
Springer-Verlag, 2002.

[HR90] L. Hemachandra and S. Rudich. On the complexity of ranking. Journal of
Computer and System Sciences, 41(2):251–271, 1990.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[Ko85] K. Ko. Continuous optimization problems and a polynomial hierarchy of real
functions. Journal of Complexity, 1:210–231, 1985.

[MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In Proceedings of the 13th IEEE Sym-
posium on Switching and Automata Theory, pages 125–129, October 1972.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

14

[PY84] C. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets
of complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

[Rog67] H. Rogers, Jr. The Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967.

[Sto76] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22, 1976.

[Wra76] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical
Computer Science, 3(1):23–33, 1976.

15

