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Abstract

We study the computational complexity of the problem SFT (Sum-free Formula partial Trace) : given a tensor
formulaF over a subsemiring of the complex field(C,+, ·) plus a positive integerk, under the restrictions that
all inputs are column vectors ofL2-norm 1 and norm-preserving square matrices, and that the output matrix is a
column vector, decide whether thekth partial trace ofFF† is superior to1/2. Thekth partial trace of a matrix is
the sum of its lowermostk diagonal elements. We also consider the promise version of this problem, where the
1/2 threshold is an isolated cutpoint. We show how to encode a quantum or reversible gate array into a tensor
formula which satisfies the above conditions, and vice-versa; we use this to show that the promise version of SFT
is complete for the class BPP for formulas over the semiring(Q+,+, ·) of the positive rational numbers, for BQP
in the case of formulas defined over the field(Q,+, ·), and for P in the case of formulas defined over the Boolean
semiring, all under logspace-uniform reducibility. This suggests that the difference between probabilistic and
quantum polynomial-time computers may ultimately lie in the possibility, in the latter case, of having destructive
interference between computations occuring in parallel.

1 Introduction

The “algebraic approach” in the theory of computational complexity consists in characterizing complexity classes

within unified frameworks built around a computational model or problem involving an algebraic structure (usually

finite or finitely generated) as the main parameter. In this way, various complexity classes are seen to share the same

definition, up to the choice of the underlying algebra. Successful examples of this approach include the description of

NC1 and its subclasses AC0 and ACC0 in terms of polynomial-size programs over finite monoids [4], and analogous

results for PSPACE, the polynomial hierarchy and the polytime mod-counting classes, through the use of polytime

leaf languages [14]. A more recent example is the complexityof problems whose input is a tensor formula, i.e.

a fully parenthetized expression where the inputs are matrices (given in full) over some finitely generated algebra
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Canada. email:beaudry@dmi.usherb.ca
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and the allowed operations are matrix addition, multiplication, and tensor product (also known as outer, or direct, or

Kronecker product). Depending on the semiring over which the formula is defined, the problem of deciding whether

the output matrix contains at least one nonzero entry is complete for NP (Boolean semiring) and MODq-P (modulo

semiringZq) [7]. Other common-sense computational problems on tensorformulas were analyzed in [7, 5].

Tensor formulas are a compact way of specifying very large matrices. As such, they immediately find a potential

application in the description and the behavior of circuits, be they classical Boolean, arithmetic (tensor formulas over

the appropriate semiring) or quantum (formulas over the complex field, or an adequately chosen subsemiring thereof).

In this paper, we formalize and confirm this intuition, in that we define a meaningful computational problem over

tensor formulas which enables us to capture the significant complexity classes P, BPP, and BQP. Looking at variants

of the problem enables us to capture further complexity classes; a table in the last section summarizes our results.

Apart from offering a first application of the algebraic approach to quantum computing, our paper reasserts the point

made by Fortnow [12], that for the classes BPP and BQP, the jump from classical to quantum polynomial-time

computation consists in allowing negative matrix entries for the evolution operators, which means the possibility of

having destructive interference between different computations done in parallel.

2 Background on circuits and complexity

We use standard notions and notations from computational complexity, see for example [2, 20]. In particular we

assume that the reader is familiar with the deterministic and probabilistic Turing machine models, with the usual

notion of a Boolean circuit, and with logspace many-one reducibility: a setK is logspace time many-one reducibleto

a setL if there is a logspace computable mappingf such that for allx, x ∈ K iff f(x) ∈ L.

To handle the three types of computation discussed in this paper (deterministic, probabilistic and quantum), we use

gate arraysas a common setting. From now on, we reserve the wordcircuit to the traditional idea of an acyclic

network with a unique output bit, and we usegate arrayto describe those computational networks which satisfy the

following definition.

Definition 2.1. Letn, d ≥ 1. A width n, d-leveled gate arrayis an × d array where each line is called awire and

each column alevel. Thesizeof a gate array is the numbernd. A gateis a set of array entries from the same level

(corresponding to the wires involved in the gate’s operation) together with a square matrix which describes its action.

Gates on a given level act on disjoint sets of entries from this level. Let the levels be numbered1 to d from left to

right. Each wire carries a bit from a level to the next in the left-to-right direction; the value entering column1 from

the left is called aninput the value exiting leveld to the right is anoutput.

A gate ofk binary inputs operates on the set ofk-bit vectors by mapping each of the2k possible combinations of

input values to a combination of output values. The extra constraint, that all gates act on neighboring wires, can be

enforced on an arbitrary array at the cost of inserting a quadratic number of extra levels with “swap” gates, which

interchange the values carried by two adjacent wires.

Gate arrays are used in particular to describe reversible classical computations. A computation isreversibleiff knowl-

edge of its output is sufficient to be able to deterministically reconstruct the input. It has been shown that for any

polynomial-time deterministic algorithm there exists an equivalent polynomial-time reversible algorithm; in other

words, from every polynomial-size Boolean circuit an equivalent reversible gate array [13] can be constructed, by
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• modifying the circuit so that the numbers of input and outputbits are equal;

• replacing the usual one-output gates with reversible gates;

• making sure that an especially identified “decision” bit takes value1 at the output level iff the original circuit’s

output is1.

From the description of the original circuit, its equivalent reversible gate array can be constructed in deterministic

logspace; circuit size and depth are increased only by a polynomial factor; usually, a polynomial number of extra

input bits initialized at0, calledancillary bits, also has to be added in the process. It has been shown that this array

can be built solely with the one- and two-bit reversible operations, plus either one of the “Toffoli” (Θ) or “Fredkin”

(Φ) gates, where

Θ =

























1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

























and Φ =

























1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

























;

here the top left position corresponds to bit values000 and the bottom right to111.

Standard techniques can therefore be used in sequence to transform the description of a polytime deterministic Turing

machine and its inputx into an instance of the Circuit Value Problem with constant inputs (wherex is hardwired)

[16], then to turn this circuit into a reversible gate array,in order to give the following definition for the class P.

(Alternatively, one can start from the definition of P as the class of those languages decided by logspace-uniform

families of polynomial-size Boolean circuits.)

Definition 2.2. P is the class of those languagesL ⊂ Σ∗ for which there exist a logspace-computable function which,

given an inputx ∈ Σ∗, computes the encoding of a reversible gate arrayC(x) with constant inputs, whose decision

bit takes value1 at the output level iffx ∈ L.

An encoding forC(x) is suitable for this definition if it consists of a reasonabledescription of the array’s inputs,

wiring and gates; the latter can wlog be restricted to have constant fan-in/fan-out, so that the action of each gate can

be specified with a constant-size Boolean matrix.

Complexity classes for polynomial-time probabilistic computation are usually defined in terms of a polytime Turing

machine which picks a random bit at every step of its computation, and otherwise acts deterministically (see e.g. [2]).

An equivalent circuit is built from this Turing machine and its input, in which an appropriate number of random bits

are fed in alongside the (constant) input bits; whether the input belongs toL is verified by counting those combinations

of random bits for which the output bit takes value1. All random bit combinations have equal length and are equally

likely.

Definition 2.3. PP is the class of those languagesL ⊂ Σ∗ for which there exist a logspace-computable function

which, given an inputx ∈ Σ∗, yields the encoding of a reversible gate arrayC(x) with a combination of constant and

random inputs, such thatx ∈ L iff fC(x) > 1
2 and x 6∈ L iff fC(x) < 1

2, wherefC(x) denotes the probability that
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C(x)’s decision bit takes value1 at the output level.

BPPis defined with the extra condition that there exists a parameter ε, 0 < ε < 1
2, such thatx ∈ L iff fC(x) >

1
2 + ε

value1 at the output level.

The classNPcan be similarly defined, with the condition thatx ∈ L iff fC(x) > 0.

The definition of BPP includes the implicit constraint, thatthe proportion of accepting computations can never fall

inside the interval[1
2
−ε, 1

2
+ε]; in other words,1

2
is an isolated cutpoint. Note that both PP and BPP can be redefined

with a cutpoint other than12.

Polynomial-time quantum computation was defined originally in terms of quantum Turing machines [8]: the data

handled by this machine (qubits) are formally represented as a vector whose complex components give the distribution

of amplitudes for the probability that the qubits be in a certain combination of values; each transition of the machine

acts as a unitary transformation on this vector.

It was later shown [21] that a quantum Turing machine and its input can be encoded in deterministic polynomial

time into an array of quantum gates, if one is allowed a small probability of error. Each wire in a quantum gate

array represents a path of a single qubit (in time or space, forward from left to right), and is described by a state in a

two dimensional Hilbert space with basis|0〉 and |1〉. Just as classical bit strings can represent the discrete states of

arbitrary finite dimensionality, so a string ofn qubits can be used to represent quantum states in any Hilbertspace of

dimensionality up to2n. The action of a gate ofk inputs is a unitary operation of the groupU(2k), i.e., a generalized

rotation in a Hilbert space of dimension2k. It has been shown that a small set of one- and two-qubit gatessuffices to

build quantum arrays, in that anyn-qubit gate can be simulated by a subarray consisting of two-qubit gates, and the

number thereof is at most an exponential inn (see for example [3, 9, 18, 17]). As two-qubit gates it suffices to take

thecontrolled-notN. Because of its usefulness we also mention the two-qubit “swap” gateT .

N =









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









, T =









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1









.

The vector of qubits received as input by a quantum gate arraycan be regarded as a linear combination ofpure states.

There is ameasurementdone on the array’s output, which consists in projecting theoutput vector onto a subspace,

usually defined by setting a chosen subset of the qubits to|1〉 (“accepting subspace”). If the qubits are numbered1

to n, then ak-qubit accepting subset can be chosen to be qubits1 to k, at the cost of inserting a quadratic number of

extra swap gates. For the sake of simplicity, we can assume that the final output state will be such that all qubits other

than the decision qubit have value|0〉. This is without loss of generality, as it will be possible to“uncompute” the

circuit while keeping the value of the decision bit. Thus, the accepting subspace has dimension1, and contains only

one base vector, and similarly for the rejecting subspace.

Definition 2.4. BQP is the class of those languagesL ⊂ Σ∗ for which there exist a logspace-computable function

which, given an inputx ∈ Σ∗, yields the encoding of a quantum gate arrayC(x) with constant inputs, and a parameter

ε, 0 < ε < 1
2, such thatx ∈ L iff fC(x) >

1
2 + ε andx 6∈ L iff fC(x) <

1
2 − ε, wherefC(x) denotes the probability

that the qubits ofC(x) be projected onto the accepting subspace at the output level.
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The remark on parameterε made after the definition of BPP also holds here. The definition of BQP still holds if we

restrict the gates to implement unitary operators with entries taken in a small set of rationals [1], and to determine

acceptance or rejection by the value of a single qubit [6].

The same definition, with unitary operators and input vectors having rational entries and without the condition that1
2

be an isolated cutpoint, yields a “quantum” version of the (classical) class PP. However, this “new” class is in fact no

different than PP itself, as can be shown by a simple countingcomplexity theory.

For any languageL in this class, there exists a quantum circuit that accepts it, for which we can define the non-

negative functionsf(x) andg(x), as the sum of all the positive and negative contributions, respectively, to the total

amplitude for the accepting configuration on a given inputx. The amplitude of this unique accepting configuration

is f(x) − g(x). Similarly, definef ′(x) andg ′(x) for the rejecting configuration, with the corresponding rejecting

amplitude beingf ′(x) − g ′(x). It is easy to see thatf, g, f ′, andg ′ are all #P functions. The difference between the

probability of accepting and rejecting of this circuit is thus

(f − g)2− (f ′ − g ′)2 = f2+ g2+ 2f ′g ′ − (f ′2+ g ′2+ 2fg)

which is aGapP function, since #P is closed under (finite) sum and product.This function will be positive if and only

x is in L, which is another way of characterizing languages in the class PP [11].

On the other hand, the languages defined with quantum gate arrays where unitary operators have rational entries and

suchx ∈ L iff fC(x) > 0 form the complexity class NQP, the quantum analogue to NP, which coincides with the

(classical) class coC=P [10].

3 Tensor Algebra

A semiringis a tuple(K,+, ·) with {0, 1} ⊆ K and binary operations+, · : K×K → K (sum and product), such that

(K,+, 0) is a commutative monoid,(K, ·, 1) is a monoid, multiplication distributes over sum, and0 · a = a · 0 = 0

for everya in K (see, e.g., [15]). A semiring is aring if and only if (S,+, 0) is a group. In this paper we consider

the following semirings: the Booleans(B,∨,∧), the field of rational numbers(Q,+, ·), the semiring(Q+,+, ·) of

positive rational numbers, and the field of complex numbers(C,+, ·).
Let MK denote the set of allmatricesoverK, and defineMk,ℓ

K ⊆ MK to be the set of allmatrices of orderk × ℓ.

Let [k] denote the set{1, 2, . . . , k}; for a matrixA in Mk,ℓ
K and(i, j) ∈ [k]× [ℓ], the(i, j)th entry ofA is denoted byai,j

or (A)i,j. Addition and multiplication of matrices inMK are defined in the usual way. Additionally we consider the

tensor product⊗ : MK ×MK → MK of matrices, also known as Kronecker product, outer product, or direct product,

which is defined as follows: forA ∈ Mk,ℓ
K andB ∈ Mm,n

K let A⊗ B ∈ Mkm,ℓn
K be

A⊗ B :=







a1,1 · B . . . a1,ℓ · B
...

. . .
...

ak,1 · B . . . ak,ℓ · B






.

Hence(A⊗ B)i,j = (A)q,r · (B)s,t wherei = k · (q− 1) + s andj = ℓ · (r − 1) + t.
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The following notation is used: letIn be the ordern identity matrix,eni then× 1 column vector whoseith entry has

value1 and the others0. and letA⊗n stand for then-fold iterationA⊗A⊗ · · · ⊗A.

Stride permutations, which play a crucial role in the implementation of efficientparallel programs for block recursive

algorithms such as the fast Fourier transform (FFT) and Batcher’s bitonic sort (see [19]) will be useful in our proofs.

Themn-point striden permutationPmn
n ∈ Mmn,mn

K is defined as

Pmn
n emi ⊗ enj = enj ⊗ emi ,

whereemi ∈ Mm,1
K andenj ∈ Mn,1

K . In other words, the matrixPmn
n permutes the elements of a vector of lengthmn

with stride distancen. We will make use of the following identities on stride permutations.

Proposition 3.1. The following holds for allℓ,m,n:

1. (Pmn
n )−1 = Pmn

m ;

2. Pℓmn
mn = Pℓmn

m · Pℓmn
n ;

3. Pℓmn
n =

(

Pℓn
n ⊗ Im

)

· (Iℓ⊗ Pmn
n ).

3.1 Tensor formulas

Definition 3.2. Thetensor formulasover a semiringK and theirorderare recursively defined as follows.

1. Every matrixF fromMk,ℓ
K with entries fromK is a (atomic) tensor formula of orderk× ℓ.

2. If F andG are tensor formulas of orderk× ℓ andm× n, respectively, then

(F +G) is a tensor formula of order isk× ℓ if k = m andℓ = n;

(F ·G) is a tensor formula of orderk× n if ℓ = m;

(F⊗G) is a tensor formula of orderkm× ℓn.

3. Nothing else is a tensor formula.

We say that a tensor formulaF is sum-freewhenever none ofF and its subformulas has the formG+H. LetTK denote

the set of all tensor formulas overK, and defineTk,ℓ
K ⊆ TK to be the set of all tensor formulas of orderk× ℓ.

In this paper we only consider semiring elements whose valuecan be given with a standard encoding over some finite

setG. Input matrices can therefore be string-encoded using listnotation such as “[[001][101]].” Nonatomic tensor

formula can be encoded over the alphabetΣ = G ∪ {[, ], (, ), ·,+,⊗}. Strings overΣ which do not encode valid

formula are deemed to represent the trivial tensor formula0 of order1× 1.

Thesizeof a tensor formulaF is 1 if F is atomic, otherwiseF = G ◦ H for ◦ ∈ {+, ·,⊗} and the size ofF is 1 plus

the sizes ofG andH. Thediameterof tensor formulaF, denoted by|F|, is max{k, ℓ} if F is atomic of orderk × ℓ;

otherwise we have thatF = G ◦H is of orderk× ℓ, and|F| = max{k, ℓ, |G|, |H|}.

It will sometimes be convenient to speak of a tensor formula in graph-theoretical terms: in this context, a tensor

formula is a binary tree whose edges are directed toward the root (“output node”), whose leaves (“input nodes”) are

labelled with atomic formulas and each of whose interior nodes is labelled with an operation from the set{+, ·,⊗}.

The depth of a tensor formula is the maximum root-leaf distance.

Definition 3.3. For each semiringK and eachk and eachℓ we definevalk,ℓK : Tk,ℓ
K → Mk,ℓ

K , that is, we associate with

nodef of orderk× ℓ of a tensor formulaF its k× ℓ matrix “value,” which is defined as follows:

6



1. valk,ℓK (f) = F if f is an input node labeled withF,

2. valk,ℓK (f) = valk,ℓK (g) + valk,ℓK (h) if f = (g+ h),

3. valk,ℓK (f) = valk,mK (g) · valm,ℓ
K (h) if f = (g · h) , and

4. valk,ℓK (f) = valk/m,ℓ/n
K (g)⊗ valm,n

K (h) if f = (g⊗ h) .

5. For completeness, recall thatvalk,ℓK (f) = 0 whenever the formula is not valid.

The valuevalk,ℓK (F) of a tensor formulaF of orderk× ℓ is defined to the value of the unique output node.

3.2 The sum-free partial trace problem

A column vectorv with complex coefficients is aunit vector iff its L2-norm is1, that is, iff v†v = 1. In this paper,

we work on probabilistic and quantum computations where theprobability amplitudes are encoded in unit column

vectors, and the foremost requirement on the computing model is that the inner product (hence also theL2 norm)

be preserved at each step of a computation. The action of eachsuch step on the various combinations of values

transported by the wires is described with a square matrix; our requirement is equivalent to asking that each matrix

preserves the inner product (unitary matrices).

A square matrixM over the complex numbers isunitary iff M† = M−1. For a matrixM over the real numbers, this

translates intoMT = M−1; which means thatM is orthogonal. It is an easily verified fact that an orthogonal matrix

contains only nonnegative entries if, and only if, it is a permutation matrix (i.e., exactly one entry per line and column

is 1 and all others are0).

In the sequel, whenever we deal simultaneously with the cases where matrices with real or complex coefficients, we

use the notations and vocabulary from the real case alone, inorder to make the text easier to read.

Thetraceof a square matrix is the sum of its diagonal elements ; fork > 0, itskth partial trace is the sum of its lastk

diagonal elements, counting upwards from the lower right corner. For completeness, ifk exceeds the diameter of the

matrix, then thekth partial trace coincides with the usual trace.

Definition 3.4. A sum-free tensor formula isOSL if and only if it satisfies the conditions:

• all inputs are orthogonal square matrices and/or unit column vectors;

• the output matrix is a column vector.

(We choose the term “orthogonal-system-like” because as wewill show, such a formula can be reorganized as a

productM ·V of an orthogonal matrix with a column vector, i.e. as the specification of an orthogonal system of linear

equations.)

Definition 3.5. Let K be a finitely generated semiring. An instance of problem SFT(K) (“sum-free formula partial

trace”) consists of an orderN×1 OSL tensor formulaF over semiringK and a positive integerk; the problem consists

in deciding whether thekth partial trace of
(

valN,1
K (F)

)

·
(

valN,1
K (F)

)T
is greater than some predetermined constant

α, 1/2 ≤ α < 1. In the “promise version” of SFT(K), no instance can yield akth partial trace which evaluates in

the interval[1− α,α].

We also define a “nonzero version” to SFT(K), as the problem which consists in deciding whether thekth partial

trace of
(

valN,1
K (F)

)

·
(

valN,1
K (F)

)T
is nonzero.
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The following propositions show that basic questions on inputs for problem SFT(K) can be answered in polynomial

time.

Proposition 3.6. [5] If F is a tensor formula of depthd which has input matrices of diameter at mostp, then|F| ≤ p2d ,

and there exists a formula which outputs a matrix of exactly this diameter.(Proof omitted.)

Proposition 3.7. [5] Testing whether a string encodes a valid tensor formula and if so, computing its order, is feasible

in deterministic polynomial time.(Proof omitted.)

4 From gate arrays to tensor formulas to gate arrays

In this section we show how to encode the description of a reversible or quantum gate array into a OSL tensor formula

over the appropriate semiring, and conversely, how to compute from an OSL formulaF a gate array which will later

used as a mean to solve an SFT instance built fromF.

4.1 From arrays to formulas

Lemma 4.1. Let C be a gate array operating onn wires, whose gates can be described with orthogonal matrices

over semiringK. There is a logspace computable function which, given a suitable coding ofC, computes a tensor

formulaF(C) of logarithmic depth such that for eachx = (x1, . . . , xn) ∈ {0, 1}n,

C(x) = valn,1K (F(C) · dx),

wheredx =
⊗n

i=1χi, χi = e12 if xi = 0, andχi = e22 otherwise.

Proof. LetC havem levels and letCi denote theith level, withC1 the left-most andCm the right-most. We describe

how to construct an equivalent tensor formulaM(C) fromC assuming that0 and1 are encoded bye12 ande22, respec-

tively (for quantum arrays, that|0〉 and|1〉 are encoded bye12 ande22, respectively). We distinguish two cases.

(i) If each gate ofCi acts on consecutive wires, that is, ifCi containsℓ ≥ 1 gatesH1, . . . , Hℓ, acting on wiresj1 to

k1, . . ., jℓ to kℓ, with j1 ≤ k1 < j2 · · · kℓ−1 < jℓ ≤ kℓ, then

M(Ci) =
(

I
⊗j1−1
2 ⊗H1⊗ I

⊗j2−k1−1
2 ⊗ · · · ⊗Hℓ⊗ I⊗n−kℓ

2

)

is the orthogonal matrix of order2n× 2n describing the action of theith level ofC.

(ii ) If Ci contains gates acting on nonadjacent wires, then choose a permutationσ of the wires which brings next

to each other those wires which are involved in the same gate.Denote byDi the ith level reorganized in this way;

its action on the (permuted) wires is described with a formulaM(Di) built as in case (i) above. The permutation is

implemented by inserting between levelsi−1 andi extra depth levels consisting of swap gates, which are collectively

described by a formulaPσ; it is undone with other extra levels, inserted betweeni andi + 1 and described byPσ−1 .

Any permutation can be expressed as a product of a polynomialnumber of cycles of the form(j, j+ 1, . . . , k− 1, k),

8



4

3

2

1

Figure 1: Simulating an arbitrary controlled-not by a controlled-not acting on neighboring wires.

with j < k; therefore it suffices to describe the formulasPj,k(C) and P̄j,k(C) which implement this cycle and its

inverse, respectively.̄Pj,k(C) which implements its inverse. The reader can verify that1

Pj,k(C) =
(

I
⊗j−1
2 ⊗ Tj,k⊗ I⊗n−k

2

)

, where Tj,k =

k−j−1∏

i=1

(

I
⊗k−j−i
2 ⊗ T ⊗ I⊗i−1

2

)

,

and

P̄j,k(C) =
(

I
⊗j−1
2 ⊗ T̄j,k⊗ I⊗n−k

2

)

, where T̄j,k =

k−j−1∏

i=1

(

I⊗i−1
2 ⊗ T ⊗ I

⊗k−j−i
2

)

;

with σ = ((j1 · · · k1) · · · (jℓ · · · kℓ))−1, this yields

Pσ(C) = P̄j1,k1
(C) · · · P̄jℓ,kℓ

(C) and Pσ−1 (C) = Pjℓ,kℓ
(C) · · · Pj1,k1

(C),

so that

M(Ci) = Pσ−1 (C) ·M(Di) · Pσ(C).

A sample construction forj = 1 andk = 4 is depicted in Figure 1.

The complete tensor formulaF(C) is given by

F(C) =

m∏

i=1

M(Ci),

which can be parenthesized in order to have logarithmic depth. It is readily verified that for eachx ∈ {0, 1}n

C(x) = valn,1K (F(C) · dx).

FormulaF(C) is logspace constructible fromC: in particular, a permutationσ suitable for case (ii ) can be built by

choosing a reorganizationDi of levelCi in which the gatesH1, . . . , Hℓ, act on wiresj1 to k1, . . ., jℓ to kℓ, such that

1 = j1, k1+1 = j2, kℓ−1+1 = jℓ; then the cyclic decomposition ofσ has the form(1, 2, 3, . . . , h1)(2, 3, . . . , h2) · · ·
where for eachi ≥ 2, the wires1, 2, . . . , i− 1 are left untouched by theith cycle.

1Note that according to the usual convention, the input-to-output direction in a gate array is left-to-right, while in its matrix representation,
the array’s action on its input is given as a product of orthogonal matrices with a column vector, and is read right-to-left.
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4.2 From formulas to arrays

In the formula-to-array part, one must deal with the fact that an OSL formula may contain matrices of various sizes,

and column vectors at atypical locations. The latter may be regarded a nonstandard or disorderly manner of specifying

the array’s inputs. Matrices of nonstandard orders, however, cannot be readily interpreted in terms of Boolean or

quantum computation: one may accept to work with many-valued bits and qubits, or the matrices may be padded in

order to turn their orders into powers of2, which is the option we choose in this paper.

Lemma 4.2. There exists a polynomial-time algorithm which turns an OSLtensor formulaF over semiringK into a

formulaΠ(F) where all subformula sizes are powers of2, and whose output is
[

valn,1K (F)

0

]

,

where0 denotes a (possibly empty) null block.

Proof. For an integern ≥ 0, let π(n) denote the smallest power of2 greater than or equal ton. We also define a

unary operatorπ which acts as follows on a matrixA:

• if A is an× n square matrix, thenπ(A) is aπ(n)× π(n) block-diagonal square matrix consisting in a copy

of A at the top left position and a copy of the identity matrixIπ(n)−n at the bottom right;

• if A is an× 1 column vector, thenπ(A) is π(n)× 1 with the entries ofA at the firstn positions, and value0

in theπ(n) − n others;

• if A is neither of the above, thenπ(A) is undefined.

WheneverA ·B, π(A) andπ(B) are defined, we haveπ(A ·B) = π(A) ·π(B), so that in the simple case whereF does

not contain any occurrence of the Kronecker product,Π(F) is built by replacing each atomic subformula ofF with its

image byπ.

This does not work in general. Consider for example the formula (A ⊗ B) · (V ⊗ W) whereA andB are33 × 33

and35 × 35, respectively, andV andW are21 × 1 and55 × 1, respectively: the orders of(π(A) ⊗ π(B)) and

(π(V)⊗π(W)) do not match. There also exist cases where the orders match but the entries of(A⊗B) · (V ⊗W) are

not consecutive in the column vector(π(A) ⊗ π(B)) · (π(V) ⊗ π(W)). Some subformulas may even yield matrices

which are neither square nor column vectors.

Nevertheless, we claim that if matricesΠ(A) andΠ(B) are available, then there exists permutationsQ andQ ′ and a

blockH such that

Q · (Π(A)⊗ Π(B)) ·Q ′ =

[

A⊗ B 0

0 H

]

,

whereQ andQ ′ can be specified with polynomial-size sum-free tensor formulas. (Note thatH is orthogonal whenever

bothA andB are.) In the special case where bothA andB are column vectors,Q ′ = I1 and the claim reads

Q · (Π(A)⊗ Π(B)) =

[

A⊗ B

0

]

.

We first show how to reorder the lines ofΠ(A) ⊗ Π(B) where bothA andB are column vectors. WithA =

[ x1 · · · xm ]T and B = [ y1 · · ·yn ]T, let µ = 2j ≥ π(m), σ = µ −m, ν = 2k ≥ π(n), andτ = ν − n. We start

10



with

Π(A) = [ x1 · · · xm x̄m+1 · · · x̄µ ]T, Π(B) = [ y1 · · ·yn ȳn+1 · · · ȳν ]T

and Π(A)⊗ Π(B) = [ x1y1 x1y2 · · · x1ȳν x2y1 x2y2 · · · x̄µȳν ]T;

the x̄i’s andȳi’s are the elements added by padding. Multiplying to the leftwith the stride permutationPµν
ν gives

Pµν
ν · (Π(A)⊗ Π(B)) = [ x1y1 x2y1 · · · xµȳ1 x1y2 x2y2 · · · x̄µȳν ]T.

Next we multiply with the matrix

Rµν
n =

[

P
nµ
µ 0

0 (Nµτ)k

]

whereNµτ = Iτ⊗ P
µ
2 . The reader can verify that

Rµν
n · Pµν

ν · (Π(A)⊗Π(B)) = [ x1y1 x1y2 · · · x1yn · · · xmyn H ]T = [ (A⊗ B) H ]T

whereH is a sizeµν − mn block whose firstnσ entries arēxm+1y1, . . . , x̄µyn and the other positions contain a

permutation ofx1ȳn+1, . . . , x1ȳν, . . . , x̄µȳν.

There remains to show how to build matricesPµν
ν andR

µν
n with polynomial-size sum-free tensor formulas. By

Proposition 3.1, it is readily verified thatPµν
ν =

(

P
µν
2

)k
, and that for anyℓ ≥ 1, the induction formulaP2ℓ+2

2 =
(

P2ℓ+1

2 ⊗ I2

)

·
(

I2ℓ ⊗ P4
2

)

yields for the matrixPµν
2 a quadratic-size tensor formula with input nodes forI2 andP24.

Meanwhile,Rµν
n =

(

S
µν
n

)k
, where

Sµνn =

[

P
nµ
2 0

0 Nµτ

]

.

In order to build this matrix, let

U =

[

P2n
2 0

0 I2τ

]

andPnµ
2 =

(

P2n
2 ⊗ I2j−1

)

·
(

In⊗ P
µ
2

)

by Proposition 3.1; observe that

(U⊗ I2j−1) ·
(

Iν⊗ P
µ
2

)

=

[

P2n
2 ⊗ I2j−1 0

0 Iτµ

]

·
[

In⊗ P
µ
2 0

0 Iτ⊗ P
µ
2

]

=

[

P
nµ
2 0

0 Iτ⊗ P
µ
2

]

= Sµνn .

Expressed in this way, matrixRµν
n can be built with a polynomial-size sum-free tensor formula, where matrixU is

either given explicitly by a made-to-purpose gate ifn is the diameter of an input matrix, or built inductively in the

case wheren = π(p) for somep, because in this caseU = P2n
2 .

The same technique applies to reorder the lines for arbitrary matricesA andB; in this case thexi’s andyi’s are lines

and eachxiyj in the above equations must be read asxi ⊗ yj. The claim for the existence of a matrixQ ′ which

reorders the columns is proved in a dual manner.

Let F be an OSL formula; the following algorithm builds a formulaΠ(F) which satisfies the conditions of the Lemma,

by recursively definingΠ(G) for each subformulaG of F.

• For each atomic subformulaG, letΠ(G) = π(G).

• Repeat recursively from the leaves toward the root ofF: for each subformulaG = H ◦ K for whichΠ(H) and

Π(K) have already been computed and◦ ∈ {·,⊗}:
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• if ◦ is “⊗” then let Π(G) = Q · (Π(H) ⊗ Π(K)) ·Q ′ and insert the appropriate subformulas forQ and

Q ′ (note thatΠ(Q) = Q andΠ(Q ′) = Q ′);

• otherwise◦ is “·”: if the orders ofΠ(H) andΠ(K) match, then letΠ(G) = Π(H) · Π(K); else they differ

by a power of2 and the smaller matrix must undergo some padding, that is, eitherΠ(G) = (I⊗i
2 ⊗Π(H)) ·

Π(K), orΠ(G) = Π(H) · ((e12)⊗i⊗ Π(K)), for an appropriatei.

Lemma 4.3. There is a polytime computable function which, from a OSL tensor formulaF over semiringK, computes

a polynomial-size gate arrayC(F) whose input is represented with a unit vectorV , whose action over the inputs is

given by an orthogonal matrixM, and such that matricesMV and valn,1K (F) satisfy

MV =

[

valn,1K (F)

0

]

,

where0 denotes a (possibly empty) null block.

Proof. The formulaΠ(F) is used as a specification for a gate arrayC(F). For each atomic subformulaG of F, either

G is m ×m for somem ≤ |F|, where|F| is the diameter ofF, andΠ(G) is interpreted as the specification of a gate

with log2π(m) = ⌈log2m⌉ inputs, orG is m × 1 andΠ(G) specifies the probability amplitudes for all possible

combinations of values of log2π(m) = ⌈log2m⌉ input bits or qubits. In the former case, a polynomial-size array of

elementary gates implements the operation specified byΠ(G); in the latter case, a sizemO(1) array is built to take as

input some constant unit vector (saye1
Π(m)

) and yield as output the vectorΠ(G). Next, working recursively from the

leaves toward the root ofΠ(F), the interior nodes are interpreted as specifications for combining the subarrays either

in a sequential (nodes labelled “·”) or parallel (nodes labelled “⊗”) manner. The resulting gate array has polynomial

size and satisfies the conditions of the lemma.

5 Complexity results

Over the Boolean semiring, a column vector is a unit vector assoon as it is nonzero, so that the standard, promise and

nonzero versions of problem SFT coincide.

Theorem 5.1. Over the Boolean semiring, problem SFT isP-complete under logspace reducibility.

Proof. Given a sizen instance(F, k) of SFT(B), we use Lemma 4.3 to build an equivalent reversible gate array C(F)

overN = nO(1) bits, and we compute the output value of each of these bits (i.e. we solveN instances of the usual

Boolean circuit value problem). This yields a combination of N values which corresponds to a given position along

the diagonal of
(

val2
N,1

B (F)
)

·
(

val2
N,1

B (F)
)T

,

under the convention that combinations00 · · · 0, . . ., 11 · · · 1 correspond to lines (and columns)1, . . . , 2N, respec-

tively. The hardness part consists in using Lemma 4.1 to reduce the P-complete circuit value problem [16] to an

instance of SFT(B).
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For the quantum and probabilistic cases we are mainly interested in the promise version of SFT, which gives us a

striking description for the difference between complexity classes BPP and BQP.

Theorem 5.2. The promise version of problem SFT(Q) is complete for the classBQP, under logspace reducibility.

Proof. The hardness part is a generic reduction. Using Definition 2.3, we start with am-leveled gate arrayC onn

qubits numbered1 to n whose accepting subspace is defined by setting qubit1 to |1〉, and whose gates are defined

with unitary matrices overQ. Denote byfC the probability that qubit1 be projected to|1〉 when the measurement

takes place. We use Lemma 4.1 to build fromC an equivalent tensor formulaF(C) =
∏m

i=1M(Ci). Meanwhile we

define for the array’s input qubits a tensor productV of n unit vectors of size2×1. An easy induction onj shows that

val2
n ,1

Q

(∏j
i=1M(Ci) · V

)

is exactly the vector of amplitudes after levelj in C. Thus the last2n−1 entries along the diagonal of
(

val2
n,1

Q (F(C) · V)
)

·
(

val2
n,1

Q (F(C) · V)
)T

add up to the value offC, and the original array’s input is accepted iff this partialtrace exceeds the threshold by which

acceptance byC was defined. Scrutiny of the reduction shows that the constraint on fC is transported intact from the

description ofC to the SFT(Q) instanceF(C) · V .

In the other direction, we use Lemma 4.3 to translate an instance(F, k) for SFT(Q) into the description of a quantum

gate array overm qubits,m ≥ log2n, and of its inputs; thekth partial trace of
(

val2
m,1

Q (F)
)

·
(

val2
m,1

Q (F)
)T

represents the probability that the output qubits of this array be projected onto the direct sum of the dimension-1

subspaces generated by|2m − 1〉 = |1 · · · 11〉, |2m − 2〉 = |1 · · · 10〉, |2m − 3〉 = |1 · · · 01〉,..., and|2m − k〉. The

promise on the partial trace is transported unmodified from the input tensor formula to the quantum gate array.

The argument described above can be used to prove that the “standard” (non-promise) version of problem SFT(Q)

is complete for PP, defined by removing the constraint from definition 2.4. Finally, when the proof is applied to the

“nonzero” version of problem SFT(Q), a completeness statement is obtained for the class NQP.

Finally, we consider problem SFT over the semiring of the nonnegative rational numbers. Note that, just as in the

quantum case, the entries in the column vectors are regardedas probabilityamplitudes. All the gates do in a classical

reversible array is permute the different vector components without ever mixing or combining them; no interference

ever takes place and it does not matter in terms of the final result, whether the probabilities are represented as such or

as amplitudes.

Theorem 5.3. Problem SFT(Q+) is PP-complete under logspace reducibility.

Proof. For a generic reduction, we start with a reversible gate array C whose input is a string ofN = s(n) + t(n)

bits, where the initials(n) bits are the ancillary bits, all set to0, and the othert(n) bits are random. By Lemma 4.1,

C and its input can be encoded intoF(C) · V , where the2N × 1 unit vectorV specifies the inputs, i.e. a bit string

c1 · · · cs(n)d1 · · ·dt(n) which satisfies the conditions

13



i. ci = 0 for all i ≤ i ≤ s(n), and

ii. all combinations of values for the random bitsd1 · · · dt(n) are equally likely.

The corresponding2t(n) entries in the vector val2N,1
Q+ (V) carry value1/

√
2t(n); all others contain0. We demand wlog

thatt(n) be even; dealing with the random bits pairwise enables us to ensure that no irrational values are necessary.

Then

V = (e11)
⊗s(n)⊗

[

1/
√
2

1/
√
2

]⊗t(n)

= (e11)
⊗s(n)⊗









1/2

1/2

1/2

1/2









⊗
t(n)

2

.

Let the acceptance condition be that bitc1 has value1 at the output level. This corresponds to the first2N−1 positions

along the diagonal of
(

val2
N,1

Q+ (F(C) · V)
)

·
(

val2
N,1

Q+ (F(C) · V)
)T

.

In the other direction, consider an instance(F, k) for SFT(Q+). We have discussed in Section 4.2 how the column

vectors and square matrices are interpreted as “inputs” and“gates” in the equivalent array, through the construction of

a formulaΠ(F) where all matrices have orders which are powers of 2. We add extra steps to the construction ofΠ(F)

in order to enforce the further condition, that all fractions have a power of2 as denominator.

Consider an × 1 unit vectorvi = [a1

d
· · · an

d
]T, wherea2

1 + · · · + a2
n = d2. Let d not be a power of2: d < π(d).

The reader can verify that there exist integersb1, . . . , bp such thatπ(d)2 = a2
1 + · · · + a2

n + b2
1 + · · · + b2

p and

p ≤ 3⌈log2d⌉. Letq = min{22j : 22j > n+ 3⌈log2d⌉}, and embedv into theq× 1 vector

[

a1

π(d)
· · · an

π(d)
0 · · · 0 b1

π(d)
· · · bp

π(d)

]T

,

which can be interpreted as a distribution of probability amplitudes for log2q input bits. Denote byδi the fraction

d/π(d). Repeating this process on each input column vector yields an instance (G, k) where the resulting partial trace

is the same one obtained from(F, k), times a factor∆2 =
∏

i δ
2
i . If we accept instance(F, k) whenever the partial

trace is above a thresholdα, then there exists a probabilistic polytime Turing machineM which accepts(G, k) with

probability aboveα
∆2 .

The algorithm ofM is divided into three phases; the first consists in building the new instance(G, k) from the original

(F, k), the second in choosing nondeterministically a column vector to give as input to the equivalent arrayC(G), and

the third in deterministically simulatingC(G) on its input. In the second stepM nondeterministically selects values

for the bits in the stringd1 · · ·dt(n); the preprocessing step has organized their probability distribution in order to

ensure that this can be done with a sequence of nondeterministic binary choices, followed by a look-up into a table

which is linear in size and is computed from the column vectors in (F, k).

The reader can verify that this proof can be rewritten in terms of the promise problem SFTP(Q+) and the complexity

class BPP; in the second part of the proof the cutpoint and thesize of the empty interval can be modified, how-

ever. Meanwhile, the complexity of the nonzero version is obtained with a straightforward application of the above

argument.
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Semiring/Version Standard Promise Nonzero

(Q,+, ·) PP BQP NQP
(Q+,+, ·) PP BPP NP
(B,∨,∧) P

Figure 2: Summary of completeness results

Corollary 5.4. The promise and nonzero versions of problem SFT(Q+) are BPP-complete andNP-complete, respec-

tively, under logspace reducibility.

6 Conclusion

Through the study of problem SFT, we have developed a common algebraic description for polynomial-time com-

plexity classes, where the choice of the semiring determines the complexity class. For the inclusion chain P⊆ BPP⊆
BQP, in particular, the classical model of polytime probabilistic computation turns out to be a special case of polytime

quantum computation where interference between computations is ruled out.
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