
Justification-based Case Retention

Santiago Ontañón and Enric Plaza

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain).
{santi,enric}@iiia.csic.es, http://www.iiia.csic.es

Abstract. A CBR system needs a good case retention strategy to de-
cide which cases to incorporate into the case base in order to maximize
the performance of the system. In this work we present a collaborative
case retention strategy, designed for multiagent CBR systems, called the
Collaborative Case Bargaining strategy. The CCB strategy is a bargain-
ing mechanism in which each CBR agent tries to maximize the utility
of the cases it retains. We will present a case utility measure called the
Justification-based Case Utility (JCU) based upon the ability of the in-
dividual CBR agents to provide justifications of their own results. An
empirical evaluation of the CCB strategy shows the benefits for CBR
agents to use this strategy: individual and collective accuracy are in-
creased while the size of the case bases is decreased.

1 Introduction

Obtaining a good case base is a main problem in Case Based Reasoning. The
performance of any CBR system depends mainly in the contents of the case base.
Therefore, maintaining compact and competent case base has become a main
topic of CBR research. Empirical results have shown that storing every available
case in the case base does not automatically improve the accuracy of a CBR
system [7]. Therefore any CBR system needs a good case retention strategy to
decide which cases to incorporate into the case base in order to maximize the
performance of the system.

Our work focuses on multiagent CBR systems (MAC) [6] where the agents
are able to solve problems individually using CBR methods and where only local
case bases are accessible to each individual agent. Problems to be solved by an
agent can be sent by an external user or by another agent. The main issue is to
find good collaboration strategies among CBR agents that can help improving
classification accuracy both individually and collectively. In a previous work [4]
we presented several strategies for collaborative case retention among groups of
CBR agents that try to take advantage of being in a multiagent scenario. In this
work we will present a new collaborative retention strategy called Collaborative
Case Bargaining (CCB) and a case utility measure called Justification-based
Case Utility (JCU).

The main difference between the new CCB strategy and the retention strate-
gies in [4] is that we now present, a new measure for assessing the utility of

retaining a case. A case has a high utility value for a CBR agent if it can prevent
the agent in making errors in the future, and a case has a low utility value if it
will not contribute in reducing the number of errors that the agent will make
in the future. Moreover, we also present a new way in which the CBR agents
negotiate among them: the CCB strategy is a bargaining mechanism in which
each agent tries to maximize the utility of the individually retained cases.

The Justification-based Case Utility (JCU) is based upon the ability of the
individual CBR agents to provide justifications of their own results, i.e. that CBR
agents are able to explain why they have classified a problem in a specific solution
class. If a CBR agent is able to provide a justification for an incorrectly solved
problem, this justification can be examined and try to prevent that the same
error is made in the future. The Justification-based Case Utility does exactly
this, and uses justifications to detect which cases can prevent a CBR agent to
repeat an error in the future and assigns them higher utility values.

The structure of the paper is as follows. Section 2 gives the basic notions
of multiagent CBR systems. Then, Section 3 introduces the concept of justi-
fications in CBR systems. Section 4 explains in detail the Collaborative Case
Bargaining retention strategy, including an illustrative example and discussion.
Finally, Section 5 presents an empirical evaluation of the CCB strategy com-
pared against some other case retention strategies. The paper closes with the
conclusions section.

2 Multiagent CBR Systems

Formally, a MAC system M = {(Ai, Ci)}i=1...n is composed on n agents, where
each agent Ai has a case base Ci. In this framework we restrict ourselves to
analytical tasks, i.e. tasks (like classification) where the solution is achieved by
selecting from an enumerated set of solutions K = {S1 . . . SK}. A case base
Ci = {(Pj , Sk)}j=1...N is a collection of problem/solution pairs. Each agent Ai

is autonomous and has learning capabilities, i.e. each agent is able to collect
autonomously new cases that can be incorporated to its local case base.

Moreover, since we focus on analytical tasks, there is no obvious decomposi-
tion of the problem in subtasks. When an agent Ai asks another agent Aj help to
solve a problem the interaction protocol is as follows. First, Ai sends a problem
description P to Aj . Second, after Aj has tried to solve P using its case base
Cj , it sends back a message with a solution endorsement record.
Definition: A solution endorsement record (SER) is a record 〈{(Sk, E

j
k)}, P,Aj〉,

where the collection of endorsing pairs (Sk, E
j
k) mean that the agent Aj has

found Ej
k cases in case base Cj endorsing solution Sk—i.e. there are a number

Ej
k of cases that are relevant (similar) for endorsing Sk as a solution for P. Each

agent Aj is free to send one or more endorsing pairs in a SER record.
In our framework, collaboration among agents is done by using collaboration

strategies. A collaboration strategy defines the way a group of agents can cooper-
ate to jointly solve some task. In our framework, a collaboration strategy consist
in an interaction protocol and a set of individual policies that the agents follow.

The interaction protocol determines the set of possible actions an agent can take
in each moment. Each agent uses his individual policies to autonomously choose
which of the possible actions to take at each moment is the best according to its
individual goals and preferences.

The next section presents the Committee collaboration strategy, that the
agents use in order to solve problems.

2.1 Committee Collaboration Strategy

In this collaboration strategy the agent members of a MAC system M are
viewed as a committee. An agent Ai that has to solve a problem P sends it to
all the other agents in M. Each agent Aj that has received P sends a solution
endorsement record 〈{(Sk, E

j
k)}, P,Aj〉 to Ai. The initiating agent Ai uses a

voting scheme above upon all SERs, i.e. its own SER and the SERs of all the
other agents in the multiagent system. The problem’s solution is the class with
maximum number of votes.

Since all the agents in a MAC system are autonomous CBR agents, they
will not have the same problem solving experience (in general, the cases in their
case bases will not be the same). This makes it likely that the errors that each
agent make in the solution of problems will not be very correlated, i.e. each
agent will not err in the same problems. It is known in machine learning that
the combination of the predictions made by several classifiers with uncorrelated
errors improves over the individual accuracies of those classifiers [3] (“ensemble
effect”). Thus, using the committee collaboration strategy an agent can increase
its problem solving accuracy.

The principle behind the voting scheme is that the agents vote for solution
classes depending on the number of cases they found endorsing those classes.
However, we want to prevent an agent having an unbounded number of votes.
Thus, we will define a normalization function so that each agent has one vote
that can be for a unique solution class or fractionally assigned to a number of
classes depending on the number of endorsing cases.

Formally, let At the set of agents that have submitted their SERs to the agent
Ai for problem P . We will consider that Ai ∈ At and the result of Ai trying
to solve P is also reified as a SER. The vote of an agent Aj ∈ At for class Sk

is V ote(Sk, Aj) = Ej
k

c+
P

r=1...K Ej
r

where c is a constant that on our experiments
is set to 1. It is easy to see that an agent can cast a fractional vote that is
always less than 1. Aggregating the votes from different agents for a class Sk we
have ballot for Sk as Ballott(Sk,At) =

∑
Aj∈At V ote(Sk, Aj) and therefore the

winning solution class is the class with more votes in total.

3 Justifications in Multiagent Systems

Many expert systems and CBR applications have an explanation component [9].
The explanation component is in charge of justifying why the system has pro-

Sponge

External
features

Spiculate
skeleton

External
features

Gemmules

Spiculate
skeleton

Megascleres

Uniform
length

Megascleres

Smooth
form

No

No

Tylostyle

Fig. 1. Simbolic justification returned by LID.

vided a specific answer to the user. The line of reasoning of the system can then
be examined by a human expert, thus increasing the reliability of the system.

All the existing work on explanation generation focuses on generating expla-
nations to be provided to the user. However, in our approach we will use ex-
planations (or justifications) as a tool for improving coordination among agents.
Allowing the agents to give a justification of their individual results is crucial
in multiagent systems since in an environment where one’s conclusions may de-
pend on knowledge provided by third parties, justifications of these conclusions
become of prime importance [8]. In our work, we focus on individual agents that
can provide justifications of their answers, and that can communicate those jus-
tifications to other agents. A CBR agent that receives a justification can then
autonomously examine this justification in order to obtain information about the
agent that created the justification. Moreover, we take benefit from the ability
of some machine learning methods to provide more information than just the
solution class, i.e. the ability to provide justifications.
Definition: A justification J built by a CBR method to solve a problem P that
has been classified into a solution class Sk is a record that contains the relevant
information that the problem P and the retrieved cases C1, ..., Cn (all belonging
to class Sk have in common.

In our work, we use LID [2], a CBR method capable of building symbolic jus-
tifications. LID uses the feature term formalism to represent cases. Feature Terms
(or ψ-terms) are a generalization of the first order terms. The main difference
is that in first order terms (e.g. person(barbara, john, dianne)) the parameters
of the terms are identified by position, while in a feature term the parameters
(called features) are identified by name (e.g. person[name .= barbara, father

.=
john,mother

.= dianne]). Another difference is that feature terms have a sort,
for instance, the previous example belongs to the sort person. These sorts can
have subsorts (e.g. man and woman are subsorts of person). Feature terms
have an informational order relation (v) among them called subsumption, where
ψ v ψ′ means all the information contained in ψ is also contained in ψ′ (we say
that ψ subsumes ψ′). When a feature term has no features (or all of its features
are equal to ⊥) it is called a leaf.

Figure 1 shows a symbolic justification returned by LID, represented as a
feature term. Each box in the figure represents a node. On the top of a box
the sort of the node is shown, and on the lower part, all the features with a
known value are shown. The arrows mean that the feature on the left part of the
arrow takes the node on the right as value. When LID returns this justification
J for having classified a problem P in a specific solution class Sk, the meaning
is that all the retrieved cases C1, ..., Cn by LID relevant for solving the problem
P belong to the solution class Sk. The content of the justification J should be
considered as a symbolic description of similarity, i.e. a description of what is
common among C1, ..., Cn and P . Moreover, the symbolic similarity J contains
the most relevant attributes of the problem P .

When an agent solves a problem the result is reified as a justification endors-
ing record (JER):
Definition: A justified endorsing record (JER) J = 〈P, S, J,A〉 is a tuple con-
taining the problem P , the solution class S found by the agent A for the problem
P , and the justification J for that problem. (To refer to the elements of a JER,
we will use the dot notation, i.e. we will use J.J to refer to the justification J
contained in the JER J).

Justifications can have many uses for CBR systems: in a previous work [5]
we applied justifications in order to improve the classification accuracy of the
committee collaboration strategy. In this paper, we are going to use justifica-
tions to compute the expected utility of individual cases in order to create case
retention strategies.

4 Collaborative Case Bargaining Retention Strategy

When an agent has access to a new case, a Case Retention strategy is needed
to decide whether to incorporate this new case into the agent’s case base or not.
In this section we are going to present a collaborative retention strategy called
Cooperative Case Bargaining (CCB).

The CCB strategy is a collaborative case retention strategy that tries to
maximize the utility of the cases retained in the individual agents’ cases bases.
The basic idea of the CCB strategy is the following: each agent has an individual
case utility estimation policy with which the agent can estimate the utility of
retaining a given case (i.e. how much the new case will contribute to the agent’s
performance if retained). Moreover, different agents may assign different utility
values to to same case, and a case that has a low utility for an agent may have a
high utility for another agent. Using the CCB strategy, agents that receive cases
with low utility values can give them to other agents if the case has a higher
utility for them (expecting to be reciprocated in the future).

As all the collaboration strategies in MAC systems, we will define the CCB
strategy as an interaction protocol and a set of individual agent policies. In this
section we will present the Cooperative Case Bargaining (CCB) protocol, and
the Justification-based Case Utility (JCU) policy, an utility function based on
justifications is used to estimate the utility of a given case for an agent.

4.1 Cooperative Case Bargaining Protocol

In this section, we are going to explain the Cooperative Case Bargaining (CCB)
protocol, designed to perform case retention among a group of agents. The CCB
protocol is based in four principles:

– Utility assessment: the individual agents are able to assess an utility value
to estimate how much a new case will contribute to the agent’s performance
if retained in its individual case base.

– Delayed retention: when an agent Ai receives new cases, they are stored in
a pool of delayed retention cases Bi instead of being retained directly into
Ai’s case base. These individual pools have a limited size m.

– Bargaining of cases: all the agents in the system compute the utility value
for any case ck in a pool of delayed retention cases, and then bargain for
those cases with maximum utility for them.

– Small competent case bases: the protocol assumes that the goal of the agents
is to achieve competent cases bases with a minimum number of cases neces-
sary for a good performance to be maintained.

In the following we will first informally describe some aspects of the CCB
protocol, and at the end of the section, the CCB protocol is formally presented.

When an agent Ai uses the CCB protocol all the new cases received go to
Bi (the pool of Ai). When the pool Bi is full, Ai sends a message to the rest
of agents stating that Ai wants to start the CCB protocol. The agent Ai that
initiates the CCB protocol is called the convener agent. During the CCB protocol
all the cases in the pools of the agents (including the cases in the pool of the
convener agent Ai) will be bargained for by the agents.

Before the bargaining starts, every agent should notify the rest of agents
about the contents of its local pool of delayed retention cases (so that every
agent knows which are the cases that are going to be bargained). We will call
B =

⋃
j Bj to the union of the pools of delayed retention cases.

The bargaining among the agents for the cases in B is performed in a series
of rounds. At each round t an agent will retain a case. Therefore at each round t
we can define the set Bt ⊆ B as the set of cases that still haven’t been retained
by any agent. In the first round, t = 0 and Bt = B.

At each round t every agent Aj computes an utility record U for each case
ck ∈ Bt. An utility record U = 〈A,C, V 〉 is a record containing the utility
value V computed by the agent A for the case C. For each case ck ∈ Bt, an
agent Aj will compute the utility record U = 〈Aj , ck, uj(ck)〉. We will note by
Uj = {〈Aj , ck, uj(ck)〉|ck ∈ Bt} to the set of all the utility records computed
by an agent Aj in a round t. When all the agents have computed these utility
records, they are sent to the convener agent. In a second step, the convener agent
examines all the utility records for each case in Bt, and selects the record Ut

with the highest utility value. Finally, the agent Ut.A receives the case Ut.C and
retains it. This finishes one round, and in the next round the agents will continue
bargaining for the cases still not retained by any agent. The bargain ends when
no agent is interested in any of the remaining cases (when an agent Aj sends an

utility equal to zero for a case ck, we say that Aj is not interested in the case ck)
or when there are no more cases to bargain (i.e. Bt = ∅). When the bargaining
ends because no agent is interested in any of the remaining cases, the cases in
Bt are discarded (of course, the agents cannot be sure that the discarded cases
will not become interesting in the future, but they are discarded to save space
in the pools of cases, expecting to receive more interesting cases in the future).

Notice that when an agent Aj retains a case ck ∈ B the individual utility
values of Aj must be recomputed (since the case base Cj of Aj has changed).
Moreover, in the case of a tie (i.e. more than one agent have given the same
maximum utility for some case), the winner is chosen randomly (but any other
more informed criterion can be used). Notice also that in order to use the CCB
protocol, the agents should have agreed before in some parameters of the protocol
(such as the size of the pools, etc.) in the following, we will assume that all the
agents have previously agreed in such parameters.

Specifically, the CCB protocol for a set of agents A is defined as follows:

1. An agent Ai ∈ A decides to initiate the CCB protocol because its pool of
delayed retention cases Bi is full, and sends an initiating message to the rest
of agents in A. Ai will be called the convener agent.

2. The other agents in A send an acknowledgment message to the convener
agent Ai meaning that they are ready to start the CCB protocol.

3. Ai broadcasts the cases contained in its pool Bi to the rest of agents.
4. In response to Ai, the rest of agents also broadcast the cases in their pools

to the other agents.
5. When an agent Aj receives all the cases from the pools of the rest of agents,

an acknowledgment message is sent back to Ai.
6. When Ai has received the acknowledgments from the rest of agents, every

agent can compute the set B =
⋃

j Bj . The first round t = 0 starts with
Bt = B, and Ai broadcasts a message requesting for the individual utility
records.

7. Every agent Aj computes the set of utility records Uj = {〈Aj , ck, uj(ck)〉|ck ∈
Bt} (computed using its own utility function. In our experiments, using the
JCU policy), and sends them to the convener agent.

8. When Ai has received the utility records Uj from every agent Aj (and has
computed its own utility values Ui), the record with the highest utility Ut ∈⋃

j Uj is selected.
– If Ut.V > 0, Ai sends the case Ut.C to Ut.A, and also sends a message

to the rest of agents telling the the agent Ut.A has received the case
Ut.C. The protocol moves to state 9.

– Otherwise (Ut.V = 0), Ai sends a message to the rest of agents telling
that the protocol is over and the remaining cases are discarded. The
protocol ends.

9. All the agents send a message to Ai acknowledging that the round is over.
10. Ai computes the set of remaining cases for the next round Bt+1 = Bt −

{Ut.C}. If Bt+1 6= ∅, Ai sends a message to the rest of agents requesting
their new utility records for the remaining cases in Bt+1. A new round t+ 1

starts and the protocol moves to state 7. Otherwise, Ai sends a message to
the rest of agents telling that the protocol is over. The protocol ends.

Delayed retention allows the agents to have a pool of cases to compute the
utility from (using the JCU policy), and bargaining cases ensures that a good
distribution of cases among the agents is achieved. The next section explains the
Justification-based Case Utility policy used to assess case utility.

4.2 Justification-based Case Utility Policy

The Justification-based Case Utility (JCU) policy uses justifications in order to
estimate the utility of adding a case ck to the case base of an agent. The basic
idea of the JCU policy is to determine if a case ck will prevent a CBR agent
to perform classification errors in the future. Therefore, the JCU policy favors
cases that increase the classification accuracy of the system without taking into
account the size of the case base.

Let agent Aj have access to a set of cases B = {(P1, SP1), ..., (Pm, SPm
)}.

None of cases in B is present in the agent’s case base, therefore they are all can-
didates to be retained. However, before retaining any case, Aj wants to compute
an utility function to decide which of them are worth retaining in the case base.
For this purpose we define the set E = {Pj |(Pj , SPj

) ∈ B} as the set of all the
problems contained in the cases in B.

To estimate the case utility values using the JCU policy, an agent Aj has to
individually solve each one of the problems in E. After the agent has solved each
problem in E, a justified endorsing record is build for each case. We will note
JE = {J|J.P ∈ E} as the set of JERs build by Aj for all the problems in the set
E. Notice that the agent knows the correct solution for each of those problems,
therefore the agent can test for each individual problem P ∈ E whether P has
been solved correctly or not. Thus, the agent can define J−E = {J|J ∈ JE∧J.S 6=
SJ.P } as the set of JERs of the problems in E that Aj has solved incorrectly
(where SJ.P is the correct solution class for the problem J.P).

We can say that a case ck = (Pk, Sk) is a counterexample of an incorrect
JER J ∈ J−E if ck is subsumed by the incorrect justification J and ck belongs to
a different solution class than the predicted one, i.e. J.J v Pk and Sk 6= J.S.
Moreover, we can define also a valid counterexample of an incorrect justification
as a counterexample ck that belongs to the correct solution class of the problem
P for which the justification J was created. i.e. a counterexample such that
Sk = SJ.P . Notice that the condition Sk = SJ.P implies that Sk 6= J.S if J is
an incorrect JER. With the notion of valid counterexample, we can define the
refutation set:
Definition: The refutation set RB

J drawn from a pool of cases B for an incorrect
JER J is defined as the set of cases from B that are valid counterexamples of
that JER. Formally: RB

J = {(Pk, SPk
) ∈ B|J.J v Pk ∧ SPk

= SJ.P }.
Notice that the cases in a refutation set RB

J are the cases from B that can
potentially prevent Aj from making the same error in the future (since they
are valid counterexamples of the justification provided by Aj). We will call

R = {RB
J |J ∈ J−Bp} the collection of all the refutation sets for all the incor-

rect justifications J−E .
We can now define the utility ui(ck) of a case ck in terms of the number of

errors that it will fix for an agent Aj . If a case ck ∈ B is not present in any
refutation set in R, that case cannot fix any of the errors made by Aj while
solving the problems in E. However, if a case ck ∈ B is present in some of the
refutation sets in R, ck can fix some of the errors made by the agent. We will
use the number of refutation sets RB

J where a case ck is present as as utility
measure, that will be called Justification-based Case Utility (JCU):

ui(ck) = #({RB
J ∈ R|ck ∈ RB

J })

Notice that the utility estimation for a case ck depends on two factors: the
case base Ci of the agent (the better the case base is, the less the errors made in
the set E, and the less the utility of new cases will be), and of the set of cases B.
The larger (and more representative) the set B is, the more accurate the utility
values assessment will be. This is the reason for delayed retention in the CCB
protocol: the larger the agents’ pools, the larger the set of cases B will be and
the more accurate the utility values assessment will be.

In JCU, justifications help to identify which cases can help avoiding errors
in solving the problems in E. Notice also that an utility equal to 0 means that
an agent is not interested in that case.

We can summarize the process of determining the utility of a set of cases B
for an agent Aj as follows:

1. Let E = {Pj |(Pj , SPj) ∈ B} be the set with the problems in B.
2. Let JE = {J|J.P ∈ E} be the set of JERs for the problems in E.
3. Let J−E = {J|J ∈ JE ∧ J.S 6= SP } be the set of incorrect JERs.
4. Let R = {RB

J |J ∈ J−Bp} be the collection of refutation sets.
5. Compute ui(ck) = #({RB

J ∈ R|ck ∈ RB
J }) for each ck ∈ B.

The JCU values could be normalized between 0 and 1 dividing by the size of
the set B, but for simplicity no normalization is applied. Next section presents
an example of the execution of the BCC protocol and of the JCU policy.

4.3 Example

Let us illustrate the behavior of the CCB protocol with an example. Consider
a system composed of 3 agents {A1, A2 and A3}, that have individual pools of
delayed retention cases B1, B2 and B3 that can store 3 cases each. At a given
time, the pools of the three agents contain the following cases: B1 = {c1, c2, c3},
B2 = {c4} and B3 = {c5}, where c1 = (P1, S1), c2 = (P2, S2), etc.

When the pool B1 of agent A1 is full the agent A1 initiates the CCB protocol.
Both A2 and A3 broadcast the cases in their pools so that all the agents have
access to the set of all delayed retention cases B = {c1, c2, c3, c4, c5}.

When the first round t = 0 starts, all the agents apply the JCU policy to
compute the utility records of the cases in B0 = B. Let us focus on how agent

a)

Round 1

c1 c2 c3 c4 c5

A1 0 2 3 0 1

A2 2 0 2 0 0

A3 0 0 0 1 2

b)

Round 2

c1 c2 c3 c4 c5

A1 0 0 - 0 0

A2 2 0 - 0 0

A3 0 0 - 1 2

c)

Round 3

c1 c2 c3 c4 c5

A2 - 0 - 0 0

A1 - 0 - 0 0

A3 - 0 - 1 2

d)

Round 4

c1 c2 c3 c4 c5

A1 - 0 - 0 -

A2 - 0 - 0 -

A3 - 0 - 0 -

Table 1. Evolution of the utility values, for 3 agents A1, A2 and A3 and a set B =
{c1, c2, c3, c4, c5} of 5 cases in the CCB protocol.

A1 uses the JCU policy: first, A1 takes the set E = {P1, ..., P5} and builds a JER
for each problem in E. Assume that A1 fails to correctly solve three problems,
P2, P3 and P5, and therefore the set J−E = {J2,J3,J5} has three JERs. A1 builds
then the refutation sets for those three JERs: RB

J2
= {c2, c3}, RB

J3
= {c3} and

RB
J5

= {c2, c3, c5}. With these refutation sets R = {RB
J2
, RB

J3
, RB

J5
} the JCU

value of the 5 cases in B for the agent A1 can now be computed:
u1(c1) = #(∅) = 0
u1(c2) = #({RB

J2
, RB

J5
}) = 2

u1(c3) = #({RB
J2
, RB

J3
, RB

J5
}) = 3

u1(c4) = #(∅) = 0
u1(c5) = #({RB

J5
}) = 1

In the same way, A2 and A3 compute their JCU values. All the agents send
their utility records to A1, that can now examine the utility records to determine
the winner. Table 1.a shows the utility values for all the agents: the winner is
the agent A1, since the utility u1(c3) is the highest. Therefore, A1 retains the
case c3, the case is not available any more, and the rest of agents are notified.

When A2 and A3 answer with an acknowledgment to A1, A1 sends again a
message to A2 and A3 requesting for the utility records of the remaining cases
B1 = {c1, c2, c4, c5} for the second round of the protocol. A1 has to recompute
its own JCU values since has retained a new case, and the new JCU values are
shown in Table 1.b. This time there is a tie between A2 and A3 that is resolved
randomly: the winner is A2, that receives the case c1 to be retained.

The JCU values in the third round for the cases B2 = {c2, c4, c5} can be seen
in Table 1.c, where the winner is A3 that receives the case c5.

In the fourth round, no agent wants any case in B3 = {c2, c4}, as shown in
Table 1.d where all the JCU values are zero. A1 sends a message to A2 and A3

telling that the CCB protocol is over, the cases c2 and c4 are discarded, and the
pools of the three agents are cleared.

One may think that, if every agent has access to all the cases during the CCB
protocol, why isn’t it the best policy to allow each agent to retain every case?

In fact, allowing each agent to retain every case is not the best policy (as we are
going to show in the experiments section), since the resulting system would be
equivalent to a single agent (since as each agent would have all the cases). In the
experiments section we will show how a group of agents using the CCB protocol
can outperform a single agent that has all the cases.

The CCB protocol may appear to be a complex way to distribute the cases
among the agents. However, it is designed in this way since the order in which
the cases are bargained does matter. A simpler protocol that would consider the
cases one at a time could lead to suboptimal results.

5 Experimental results

This section evaluates the performance of the CCB strategy and of the JCU
policy. For that purpose, we are going to compare the performance of groups of
agents using the CCB strategy against groups of agents using other retention
strategies. The presented results will be related to classification accuracy and
case base sizes of the agents.

We use the marine sponge classification problem as our test bed. We have de-
signed an experimental suite with a case base of 280 marine sponges pertaining
to three different orders of the Demospongiae class (Astrophorida, Hadromerida
and Axinellida). The goal of the agents is to identify the correct biological or-
der given the description of a new sponge. In each experimental run the whole
collection of cases is divided in two sets, a training set (containing a 90% of the
cases), and a test set (containing a 10% of the cases). The cases in the training
set are sent to the agents incrementally, i.e. each problem in the training set
arrives randomly to one agent in the MAC. The agent receiving the case will
apply a retention strategy to decide whether to retain the case or not. Each time
that a 10% of the training set is sent to the agents, the test set is also sent to
them to evaluate their classification accuracy at that moment in time. Thus, the
test set is sent to the agents 11 times (one at the beginning, and 10 as each 10%
of the training set is sent) to obtain the evolution of the classification accuracy
of the agents as they retain cases from the training set. Both, the accuracy of
the committee and the individual accuracy of the agents will be measured. The
results presented in this section are the average of the accuracies obtained for
the test sets in 5 10-fold cross validation runs. All the agents use the LID CBR
method to solve problems.

These experiments evaluate the effectiveness of the collaborative learning
policies, so it is important that the agents really have an incentive to collaborate.
If every agent receives a representative (not biased) sample of the data, they will
have a lower incentive to ask for cases to other agents since they already have
a good sample. For this reason, for experimentation purposes, the agents do
not receive the problems randomly. We force biased case bases in every agent
by increasing the probability of each agent to receive cases of some classes and
decreasing the probability to receive cases of some other classes. Therefore, each
agent will have a biased view of the data. This will lead to a poor individual

performance, as we will see when we present the individual accuracy results, and
an incentive to collaborate. However, we will also give some experimental results
on the non biased scenario.

We will compare the performance of 4 different retention strategies:

– Cooperative Case Bargaining (CCB) strategy: This is the strategy presented
in this paper, where the agents store cases in their pools of delayed retention
cases, and when the pools are full the CCB protocol is engaged.

– Always Retain (AR) strategy: In this strategy, an agent simply retains all
the cases individually received.

– On Failure Retain (OFR) strategy: In this strategy, an agent tries to solve a
case before retaining it. If the agent fails to solve the problem correctly, the
case is retained (this strategy is essentially that of IB2 [1] for instance based
learners).

– Individual Justification Case Utility (IJCU) strategy: In this strategy, the
agents store cases in their pools, but when the pools are full, the agents
simply apply the JCU policy to decide which cases to retain from their indi-
vidual pool without sharing cases with other agents. The cases not wanted
by the agents are discarded. Since this strategy avoids collaboration, it is a
valid retention strategy for individual CBR systems as well.

Figure 2 shows the evolution of the classification accuracy for a 5 agents
MAC where the agents use the committee collaboration strategy to solve prob-
lems. Four different lines are shown, one per each retention strategy tested. The
horizontal axis shows the percentage of cases from the training set that the agents
have received. Notice that each problem of the training set is only received by a
single agent. Therefore, each agent receives only a fifth of the total training set
(since there are 5 agents in our experiments).

Figure 2 shows that the agents using the CCB retention strategy obtain
the highest accuracies, reaching an accuracy of 91.5%. Agents using the AR
(retaining every case they receive) are behind the agents using CCB, reaching
an accuracy of 88.14%. Finally, OFR and IJCU reach similar accuracies: 83.78%
and 84.57% respectively, but with IJCU winning for a slight difference. Notice
that the IJCU curve grows a little slower at the beginning than OFR (due to
the delayed retention), but this effect is very soon compensated.

For comparison purposes, notice that the classification accuracy of a single
agent owning all the cases in the training set (i.e. the accuracy of a central-
ized approach) is of 88.20% (lower than the accuracy of 91.5% obtained by the
committee using the CCB strategy). Moreover, the accuracy obtained by the
committee using a unbiased distribution of cases among the 5 agents (i.e. using
AR without bias) is of 88.36%, still lower than the accuracy obtained by CCB.
Therefore, we can conclude that CCB obtains a better distribution of cases than
a random unbiased distribution or a centralized approach.

We can also compare the different retention strategies concerning the sizes
of the case bases of the CBR agents at the end of the experiments shown in
Table 2. The strategy that obtains larger case bases is the AR strategy (since

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90 100

Percentage of Cases from the Training Set Seen

A
cc

u
ra

cy CCB
AR
OFR
IJCU

Fig. 2. Comparison of the evolution of classification accuracy for the committee using
different retention strategies.

CCB AR OFR IJCU

27.6 50.4 19.0 16.6

Table 2. Average case base sizes of the individual agents after having received all the
cases o the training set.

the agents always retain every case they receive), with an average size of 50.4
cases. Agents using the CCB strategy retain only 27.6 cases in average, about
a 55% of the cases retained by the AR strategy. The OFR strategy retains less
cases, obtaining an average of 19.0 cases per agent. Finally, the strategy that
obtains smaller case bases is the IJCU strategy (where the agents use the IJUC
policy, but only with the cases in their local pools).

Taking into account both the results in classification accuracy and the case
base size we can conclude that CCB is clearly better than AR, since retains
less cases and achieves higher accuracies. IJCU is also clearly better than OFR,
since IJCU achieves slightly higher accuracies and with smaller case bases. We
can also see that CCB is clearly better than IJCU and OFR, since there is a large
increase on accuracy of CCB with respect to IJCU and OFR. The cases that CCB
retains (and OFR or IJCU do not) are the reason for the increased classification
accuracy. Moreover, since CCB is equivalent to adding collaboration to IJCU,
we can conclude that collaboration is beneficial for the CBR agents.

Finally, we also present results of individual classification accuracy. Figure
3 shows the evolution of classification accuracy for a 5 agents MAC where the
agents solve problems individually. This time, the increment in classification
accuracy of CCB with respect to the rest of strategies is increased: agents using
CCB obtain a 82.88% of individual accuracy, agents using AR obtain a 73.11%
of classification accuracy, agents using OFR a 66.34% and agents using IJCU a

35

40

45

50

55

60

65

70

75

80

85

0 10 20 30 40 50 60 70 80 90 100

Percentage of Cases from the Training Set Seen

A
cc

u
ra

cy CCB
AR
OFR
IJCU

Fig. 3. Comparison of the evolution of agents’ individual classification accuracy using
different retention strategies.

66.88%. The increase in the committee accuracy obtained by CCB with respect
to the other retention strategies is mostly due to the increase of accuracy of the
individual CBR agents, from 73.11% to 82.88%. Moreover, the increase from the
individual accuracy to the committee accuracy is due to the ensemble effect, from
82.88% to 91.5% with the CCB strategy. Notice that the ensemble effect requires
that the errors made by the individual agents are not correlated. Therefore, we
can conclude that the CCB strategy is able to keep the error correlation among
the agents low so that they can still benefit from the ensemble effect.

6 Conclusions

This paper has presented the Collaborative Case Bargaining (CCB) strategy for
case retention, in which individual agents collaborate in order to select which
cases to retain. We have introduced the concept of justification. A justification
contains information concerning why a CBR agent has classified a problem into
a specific solution class. We have presented the Justification-based Case Utility
(JCU) policy, that is able to compute an utility measure of the cases to be
retained using justifications. Justifications allow JCU to determine which cases
can avoid making errors in the future, and give higher utility values to those cases
that can avoid the higher number of errors in the future. Therefore, justifications
have proven to be a useful tool in CBR systems. We have also shown that using
the CCB strategy in combination with the committee collaboration strategy,
agents can obtain better results than a centralized approach (where a single case
base would contain all the available cases).

Moreover, we have introduced the concept of delayed retention. By using
delayed retention, a CBR agent does not decide whether to retain a case until
a pool of delayed retention cases is full. This allows the CBR agents to better

decide which are the cases to retain in the case base. Moreover, delayed retention
requires a certain amount of cases to perform good estimation of the utility of the
cases. In our experiments, the size of the individual agents’ pools is 5. However,
we plan to make experiments with different pool sizes. A larger pool size implies
a better utility assessment, but at the cost of delaying the learning process,
so some tradeoff is needed. Notice also that delayed retention and the JCU
policy can be also applied to centralized CBR systems, since no collaboration is
needed. For instance, a CBR system with all the cases using the JCU policy has
an accuracy of 86.42% while retaining only 61.1 cases in average (a 24.24% of
the total number of cases).

The distribution of retained cases among the CBR agents plays a main role
in the final classification accuracy obtained by the committee of CBR agents.
We have seen that the CCB strategy allows the CBR agents to obtain good
distributions of cases. As a future work we plan to develop further strategies to
improve the distribution of cases among CBR agents. CCB selects good cases
for retention, but once an agent has retained a case, no other agent can retain
it, and it will be never moved to another agent’s case base. We plan to develop
strategies for case redistribution among individual agents’ case bases to improve
the individual and collective performance.

Acknowledgements The authors thank Eva Armengol and Josep-Llúıs Arcos of the

IIIA-CSIC for the development of the LID and of the Noos agent platform respectively.

Support for this work came from CIRIT FI/FAP 2001 grant and project SAMAP

(MCYT-FEDER) TIC2002-04146-C05-01.

References

[1] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algo-
rithms. Machine Learning, 6(1):37–66, 1991.

[2] E. Armengol and E. Plaza. Lazy induction of descriptions for relational case-based
learning. In Luc de Raedt and Peter Flach, editors, EMCL 2001, number 2167 in
Lecture Notes in Artificial Intelligence, pages 13–24. Springer-Verlag, 2001.

[3] L. K. Hansen and P. Salamon. Neural networks ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12:993–1001, 1990.

[4] S. Ontañón and E. Plaza. Cooperative case retention strategies for cbr agents. In
Derek Bridge and Kevin Ashley, editors, ICCBR-2003. Springer-Verlag, 2003.

[5] S. Ontañón and E. Plaza. Justification-based multiagent learning. In Proc. 20th
ICML, pages 576–583. Morgan Kaufmann, 2003.

[6] E. Plaza and S. Ontañón. Ensemble case-based reasoning: Collaboration policies
for multiagent cooperative cbr. In I. Watson and Q. Yang, editors, ICCBR-2001,
number 2080 in LNAI, pages 437–451. Springer-Verlag, 2001.

[7] B. Smyth. The utility problem analysed: A case-based reasoning persepctive. In
EWCBR-96, LNAI, pages 234–248. Springer Verlag, 1996.

[8] Frank van Harmelen. How the semantic web will change KR. The Knowledge
Engineering Review, 17(1):93–96, 2002.

[9] Bruce A. Wooley. Explanation component of software systems. ACM Crossroads,
1998.

