Skip to main content

Case Acquisition and Case Mining for Case-Based Object Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3155))

Abstract

Model-based image recognition requires a general model of the object that should be detected in an image. In many applications such models are not known a-priori instead of they must be learnt from examples. Real world applications such as the recognition of biological objects in images cannot be solved by one general model but a lot of different models are necessary in order to handle the natural variations of the appearance of the objects of a certain class. Therefore we are talking about case-based object recognition. In this paper we describe how the shape of an object can be extracted from images and input into a case description. These acquired cases we mine for more general shapes so that at the end a case base of shapes can be constructed and applied for case-based object recognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veltkamp, R.C.: Shape Matching: Similarity Measures and Algorithms. Shape Modelling International, 188–197 (2001)

    Google Scholar 

  2. Rangarajan, A., Chui, H., Bookstein, F.L.: The Softassign Procrustes Matching Algorithm. In: Proc. Information Processing in Medical Imaging, pp. 29–42 (1997)

    Google Scholar 

  3. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: 1st International Conference on Computer Vision, London, pp. 259–268 (1987)

    Google Scholar 

  4. Cheng, D.-C., Schmidt-Trucksäss, A., Cheng, K.-S., Burkhardt, H.: Using Snakes to Detect the Intimal and Aventitial Layers of the Common Carotid Artery Wall in Sonographic Images. Computer Methods and Programs in Biomedicine 67, 27–37 (2002)

    Article  Google Scholar 

  5. Kendall, D.G.: A Survey of the Statistical Theory of Shape. Statistical Science 4(2), 87–120 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bookstein, F.L.: Size and Shape Spaces for Landmark Data in Two Dimensions. Statistical Science 1(2), 181–242 (1986)

    Article  MATH  Google Scholar 

  7. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley & Sons Inc., Chichester (1998)

    MATH  Google Scholar 

  8. Cootes, T.F., Taylor, C.J.: A Mixture Model for Representing Shape Variation. Image and Vision Computing 17(8), 567–574 (1999)

    Article  Google Scholar 

  9. Feldmar, J., Ayache, N.: Rigid, Affine and Locally Affine Registration of Free-Form Surfaces. The International Journal of Computer Vision 18(3), 99–119 (1996)

    Article  Google Scholar 

  10. Hill, A., Taylor, C.J., Brett, A.D.: A Framework for Automatic Landmark Identification Using a New Method of Nonrigid Correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(3), 241–251 (2000)

    Article  Google Scholar 

  11. Mortensen, E.N., Barrett, W.A.: Intelligent Scissors for Image Composition. In: Computer Graphics Proceedings, pp. 191–198 (1995)

    Google Scholar 

  12. Haenselmann, T., Effelsberg, W.: Wavelet-Based Semi-Automatic Live-Wire Segmentation. In: Proceedings of the SPIE Human Vision and Electronic Imaging VII, vol. 4662, pp. 260–269 (2003)

    Google Scholar 

  13. Bookstein, F.L.: Landmark Methods for Forms without Landmarks: Morphometrics of Group Differences in Outline Shape. Medical Image Analysis 1(3), 225–244 (1997)

    Article  Google Scholar 

  14. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)

    Article  Google Scholar 

  15. Rangarajan, A., Chui, H., Bookstein, F.L.: The Softassign Procrustes Matching Algorithm. In: Proc. Information Processing in Medical Imaging, pp. 29–42 (1997)

    Google Scholar 

  16. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing Images Using the Hausdorff Distance. IEEE Trans. Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)

    Article  Google Scholar 

  17. Latecki, L.J., Lakämper, R.: Shape Similarity Measure Based on Correspondence of Visual Parts. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1185–1190 (2000)

    Article  Google Scholar 

  18. Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and Robust Retrieval by Shape Content through Curvature Scale Space. In: Proc. International Workshop on Image Databases and Multimedia Search, pp. 35–42 (1996)

    Google Scholar 

  19. Besl, P., McKay, N.: A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  20. Petrou, M., Bosdogianni, P.: Image Processing – The Fundamentals. John Wiley & Sons Inc, Chichester (1999)

    Google Scholar 

  21. Wall, K., Daniellson, P.-E.: A Fast Sequential Method For Polygonal Approximation of Digitized Curves. Comput. Graph. Image Process. 28, 220–227 (1984)

    Article  Google Scholar 

  22. Lele, S.R., Richtsmeier, J.T.: An Invariant Approach to Statistical Analysis of Shapes. Chapman & Hall / CRC (2001)

    Google Scholar 

  23. Perner, P.: Data Mining on Multimedia Data. Springer, Berlin (1998)

    Google Scholar 

  24. Alt, H., Guibas, L.J.: Discrete Geometric Shapes: Matching, Interpolation and Approximation. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. Elsevier Science Publishers B.V, Amsterdam (1996)

    Google Scholar 

  25. Sclaroff, S., Pentland, A.: Modal Matching for Correspondence and Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 17(6), 545–561 (1995)

    Article  Google Scholar 

  26. Perner, P., Bühring, A.: Case-Based Object Recognition. In: ECCBR 2004 (accepted)

    Google Scholar 

  27. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc., Englewood Cliffs (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jänichen, S., Perner, P. (2004). Case Acquisition and Case Mining for Case-Based Object Recognition. In: Funk, P., González Calero, P.A. (eds) Advances in Case-Based Reasoning. ECCBR 2004. Lecture Notes in Computer Science(), vol 3155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28631-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28631-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22882-0

  • Online ISBN: 978-3-540-28631-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics