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Ruhr University of Bochum, Universitätsstraße 150, D-44780 Bochum, Germany

Abstract. We present an implementation of elliptic curves and of hyperelliptic
curves of genus 2 and 3 over prime fields. To achieve a fair comparison between
the different types of groups, we developed an ad-hoc arithmetic library, designed
to remove most of the overheads that penalize implementations of curve-based
cryptography over prime fields. These overheads get worse for smaller fields, and
thus for larger genera for a fixed group size. We also use techniques for delaying
modular reductions to reduce the amount of modular reductions in the formulae
for the group operations.

The result is that the performance of hyperelliptic curves of genus 2 over prime
fields is much closer to the performance of elliptic curves than previously thought.
For groups of 192 and 256 bits the difference is about 14% and 15% respectively.

Keywords: Elliptic and hyperelliptic curves, cryptography, efficient implementa-
tion, prime field arithmetic, lazy and incomplete modular reduction.

1 Introduction

In 1988 Koblitz [21] proposed to use hyperelliptic curves (HEC) as an alternative to
elliptic curves (EC) for designing cryptosystems based on the discrete logarithm problem
(DLP). EC are just the genus 1 HEC. Cryptosystems based on EC need a much shorter
key than RSA or systems based on the DLP in finite fields:A 160-bit EC key is considered
to offer security equivalent to that of a 1024-bit RSA key [25]. Since the best known
methods to solve the DLP on EC and on HEC of genus smaller than 4 have the same
complexity, these curves offer the same security level, but HEC of genus 4 or higher
offer less security [12,38].

Until recently, HEC have been considered not practical [36] because of the diffi-
culty of finding suitable curves and their poor performance with respect to EC. In the
subsequent years the situation changed.

Firstly, it is now possible to efficiently construct genus 2 and 3 HEC whose Jacobian
has almost prime order of cryptographic relevance. Over prime fields one can either
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count points in genus 2 [13], or use the complex multiplication (CM) method for genus
2 [29,39] and 3 [39].

Secondly, the performance of the HEC group operations has been considerably im-
proved. For genus 2 the first results were due to Harley [17]. The state of the art is now
represented by the explicit formulae of Lange: see [23,24] and further references therein.
For genus 3, see [32,33] (and also [14]).

HEC are attractive to designers of embedded hardware since they require smaller
fields than EC: The order of the Jacobian of a HEC of genus g over a field with q
elements is ≈ qg . This means that a 160-bit group is given by an EC with q ≈ 2160,
by an HEC of genus 2 with q ≈ 280, and genus 3 with q ≈ 253. There has been also
research on securing implementations of HEC on embedded devices against differential
and Goubin-type power analysis [2].

The purpose of this paper is to present a thorough, fair and unbiased comparison
of the relative performance merits of generic EC and HEC of small genus 2 or 3 over
prime fields. We are not interested in comparing against very special classes of curves
or in the use of prime moduli of special form.

There have been several software implementations of HEC on personal computers
and workstations. Most of those are in even characteristic (see [35,32], [33], and also [40,
41]), but some are over prime fields [22,35]. It is now known that in even characteristic,
HEC can offer performance comparable to EC.

Until now there have been no concrete results showing the same for prime fields.
Traditional implementations such as [22] are based on general purpose software libraries,
such asgmp [16]. These libraries introduce overheads which are quite significant for small
operands such as those occurring in curve cryptography, and get worse as the fields get
smaller. Moreover, gmp has no native support for fast modular reduction techniques. In
our modular arithmetic library, described in § 2.1, we made every effort to avoid such
overheads. On a PC we get a speed-up from 2 to 5 over gmp for operations in fields
of cryptographic relevance (see Table 1). We also exploit techniques for reducing the
number of modular reductions in the formulae for the group operations.

We thus show that the performance of genus 2 HEC over prime fields is much closer
to the performance of EC than previously thought. For groups of 192 resp. 256 bits
the difference is approximately 14%, resp. 15%. The gap with genus 3 curves has been
significantly reduced too. See Section 3 for more precise results.

While the only significant constraint in workstations and commodity PCs may be
processing power, the results of our work should also be applicable to other more con-
strained environments, such as Palm platforms, which are also based on general-purpose
processors. In fact, a port of our library to the ARM processor has been recently finished
and yields similar results.

In Section 2, we describe the implementation of the arithmetic library and of the
group operations. In Section 3, we give timings and draw our conclusions.

2 Implementation

We use the following abbreviations: w is the bit length of the characteristic of the prime
field. M, S and I denote a multiplication, a squaring and an inversion in the field. m and s
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denote a multiplication and a squaring, respectively, of two w-bit integers with a 2w-bit
result. R denotes a modular (or Montgomery) reduction of a 2w-bit integer with a w-bit
result.

2.1 Prime Field Library

We already said that standard long integer software libraries introduce several types of
overheads. One is the fixed function call overhead. Other ones arise from the processing of
operands of variable length in loops, such as branch mispredictions at the beginning and
end of the loops, and are negligible for very large operands. For operands of size relevant
for curve cryptography the CPU will spend more time performing jumps and paying
branch misprediction penalties than doing arithmetic. Memory management overheads
can be very costly, too.

Thus, the smaller the field becomes, the higher will be the time wasted in the over-
heads. Because of the larger number of field operations in smaller fields, HEC suffer
from a much larger performance loss than EC.

Design. Our software library nuMONGO has been designed to allow efficient reference
implementations of EC and HEC over prime fields. It implements arithmetic operations in
rings Z/NZ with N odd, with the elements stored in Montgomery’s representation [31],
and the reduction algorithm is Montgomery’s REDC function – see § 2.1 for some more
details. Many optimization techniques employed are similar to those in [6].

nuMONGO is written in C++ to take advantage of inline functions, overloaded functions
statically resolved at compile time for clarity of coding, and operator overloading for
I/O only. All arithmetic operations are implemented as imperative functions. nuMONGO
contains no classes. All data structures are minimalistic. All elements of Z/NZ are
stored in vectors of fixed length of 32-bit words. All temporary memory is allocated on
the stack. No data structure is ever dynamically resized or relocated. This eliminates
memory management overheads.

The routines aim to be as simple as possible. The least possible number of routines
are implemented which still allow to perform all desired field operations: They are built
from elementary operations working on single words, available as generic C macros
as well as assembler macros for x86-compatible CPUs. A CPU able to process 32-bit
operands is assumed, but not necessarily a 32-bit CPU – the library in fact compiled also
on an Alpha. Inlining was used extensively, most loops are unrolled; there are very few
conditional branches, hence branch mispredictions are rare. There are separate arithmetic
routines for all operand sizes, in steps of 32 bits from 32 to 256 bits, as well as for 48–bit
fields (80 and 112-bit fields have been implemented too, but gave no speed-up over the
96 and 128-bit routines).

Multiplication. We begin with two algorithms to multiply “smallish” multi-precision
operands: Schoolbook multiplication and Comba’s method [10].

The next two algorithms take as input two �-word integers u = (u�−1, . . . , u1, u0)
and v = (v�−1, . . . , v0), and output the 2�-word integer r = (r2�−1, . . . , r0) such that
r = uv.
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Schoolbook multiplication
1. r0 ← 0, . . . , r2�−1 ← 0
2. for i from 0 to �− 1 do {
3. c← 0
4. for j from 0 to �− 1 do {
5. (c, rj+i)← uivj + rj+i + c }
6. ri+� ← c }
7. return(r)

Comba’s method
1. s0 ← 0, s1 ← 0, s2 ← 0
2. for k from 0 to 2(�− 1) do {
3. for each pair (i, j) such that i + j = k

and 0 � i, j < �, do {
4. (s2, s1, s0)← (s2, s1, s0) + uivj }
5. rk ← s0, s0 ← s1, s1 ← s2, s2 ← 0 }
6. r2�−1 ← s0
7. return(r)

The schoolbook method multiplies the first factor by each digit of the second factor,
and accumulates the results. Comba’s method instead, for each digit of the result, say
the kth one, computes the partial products uivj on the diagonals i+ j = k, adding these
double precision results to a triple precision accumulator. It requires fewer memory
writes and more reads than the schoolbook multiplication. This is the method adopted
in [6]. For both methods, several optimizations have been done. They can both be used
with Karatsuba’s trick [20].

In our experience, Comba’s method did not perform better than the schoolbook
method (on the ARM the situation is different). This may be due to the fact that the
Athlon CPU has a write-back level 1 cache [1], hence several close writes to the same
memory location cost little more than one generic write. For n = 192 and n = 256 we
reduced a n-bit multiplication to three n/2-bit multiplications by means of Karatsuba’s
trick. For smaller sizes and for 224-bit operands, the schoolbook method was still faster.

For the considered operand sizes, squaring routines did not bring a significant im-
provement over the multiplication routines, hence they were not included.

Montgomery’s reduction without trial division. Montgomery [31] proposed to speed
up modular reduction by replacing the modulus N by a larger integer R coprime to N
for which division is faster. In practice, if β is the machine radix (in our case β = 232)
and N is an odd �-word integer, then R = β�. Division by R and taking remainder are
just shift and masking operations.

Let REDC(x) be a function which, for 0 � x < NR, computes xR−1 mod N .
The modular residue x is represented by its r-sidu x̄ = xR mod N . Addition, sub-

traction, negation and testing for equality are performed on r-sidus as usual.
Note that x = REDC(x). To get the r-sidu of an integer x, compute REDC(xR2), hence

R2 mod N should be computed during system initialization. Now x̄ ȳ ≡ xR yR ≡
xyR mod N , so xy = REDC(xy) can be computed without any division by N . We
implemented REDC by the following method [5], which requires the inverse n′0 of N
modulo the machine radix β = 232.

Function REDC(x)
Input: A 2�-word integer x = (x2�−1, . . . , x1, x0), and N , n′

0 and β as above.
Output: The �-word integer y such that y = xR−1 mod N and 0 � y < N .
1. y = (y2�−1, . . . , y1, y0)← x
2. for i from 0 to �− 1 do {
3. t← y0 · n′

0 mod β, y ← y + t ·N , y ← y ÷ β }
4. if y � N then y ← y −N
5. return(y)
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This algorithm is, essentially, Hensel’s odd division for computing inverses of 2-adic
numbers to a higher base: At each iteration of the loop, a multiple of N is added to y
such that the result is divisible by β, and then y is divided by β (a one word shift). After
the loop, y ≡ x/β� ≡ xR−1 mod N and y < 2N . If y � N , a subtraction corrects
the result. The cost of REDC is, at least in theory, that of a schoolbook multiplication
of �-word integers, some shifts and some additions; In practice it is somewhat more
expensive, but still much faster than the naive reduction involving long divisions. We
did not use the interleaved multiplication with reduction [31]: It usually performs better
on DSPs [11], but not on general-purpose CPUs with few registers.

Inversion. With the exception of 32-bit operands, inversion is based on the extended
binary GCD, and uses an almost-inverse technique [19] with final multiplication from
a table of precomputed powers of 2 mod N . This was the fastest approach up to about
192 bits. For 32-bit operands we got better performance with the extended Euclidean
algorithm and special treatment of small quotients to avoid divisions. Inversion was not
sped up further for larger input sizes because of the intended usage of the library: For
elliptic curves over prime fields, inversion-free coordinate systems are much faster than
affine coordinates, so there is need, basically, only for one inversion at the end of a
scalar multiplication. For hyperelliptic curves, fields are quite small (32 to 128 bits in
most cases), hence our inversion routines have optimal performance anyway. Therefore,
Lehmer’s method or the improvements by Jebelean [18] or Lercier [26] have not been
included in the final version of the library.

Performance. In Table 1 we show some timings of basic operations with gmp version
4.1 and nuMONGO. The timings have been measured on a PC with a 1 GHz AMD Athlon
Model 4 processor, under the Linux operating system (kernel version 2.4). Our programs
have been compiled with the GNU C Compiler (gcc) versions 2.95.3 and 3.3.1. For each
test, we took the version that gave the best timings. nuMONGO always performed best with
gcc 3.3.1, whereas some gmp tests performed better with gcc 2.95.31. We describe the
meaning of the entries. There are two groups of rows, grouped under the name of library
used to benchmark the following operations: multiplication of two integers (m), modular
or Montgomery reduction (R), modular or Montgomery inversion (I). The ratios of a
reduction to a multiplication and of an inversion to the time of a multiplication together
with a reduction are given, too: The first ratio tells how many “multiplications” we save
each time we save a reduction using the techniques described in the next subsection;
the second ratio is the cost of a field inversion in field multiplications. The columns
correspond to the bit lengths of the operands. A few remarks:

1. nuMONGO can perform better than a far more optimized, but general purpose library.
In fact, the kernel of gmp is entirely written in assembler for most architectures,
including the one considered here.

1 In some cases gcc 2.95.3 produced the fastest code when optimizing nuMONGO for size (-Os),
not for speed! This seems to be a strange but known phenomenon.gcc 3.3.1 had a more orthodox
behavior and gave the best code with -O3, i.e. when optimizing aggressively for speed. In both
cases, additional compiler flags were used for fine-tuning.
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Table 1. Timings of basic operations in µsec (1 GHz AMD Athlon PC) and ratios

2. For larger operands gmp catches up with nuMONGO, the modular reduction remaining
slower because it is not based on Montgomery’s algorithm.

3. nuMONGO has a higher I/(m+R) ratio than gmp. This shows how big the overheads in
general purpose libraries are for such small inputs.

2.2 Lazy and Incomplete Reduction

Lazy and incomplete modular reduction are described in [3]. Here, we give a short
treatment. Let p < 2w be a prime, where w is a fixed integer. We consider expressions of
the form

∑d
i=1 aibi mod p with 0 � ai, bi < p. Such expressions occur in the explicit

formulae for HEC. To use most modular reduction algorithms, including Montgomery’s,
at the end of the summation, we have to make sure that all partial sums of

∑
aibi are

smaller than p 2w. Some authors (for example [27]) suggested to use small primes, to
guarantee that the condition

∑
aibi < p 2w is always satisfied. Note that [27] exploited

the possibility of accumulating several partial results before reduction for the extension
field arithmetic, but not at the group operation level. The use of small primes at the group
operation level has been considered also in [14] after the present paper appeared as a
preprint. However, “just” using primes which are “small enough” would contradict one
of our design principles, which is to have no restriction on p except its word length.

What we do, additionally, is to ensure that the number obtained by removing the
least significant w bits of any intermediate result remains < p. We do this by adding the
products aibi in succession, and checking if there has been an overflow or if the most
significant half of the intermediate sum is � p : if so we subtract p from the number
obtained ignoring the w least significant bits of the intermediate result. If the intermediate
result is � 22w, the additional bit can be stored in a carry. Since all intermediate results
are bounded by p2w+1 < (p+2w)2w, upon subtraction of p 2w the carry will always be
zero. This requires as many operations as allowing intermediate results in triple precision,
but less memory accesses are needed: In practice this leads to a faster approach, and at
the end we have to reduce a number x bounded by p 2w, making the modular reduction
easier.
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This technique of course works with any classical modular reduction algorithm. That
it works with Montgomery’s r-sidus and with REDC is a consequence of the linearity of
the operator REDC modulo p.

nuMONGO supports Lazy (i.e. delayed) and Incomplete (i.e. limited to the number
obtained by removing the least significant w bits) modular reduction. Thus, an expression
of the form

∑d−1
i=0 aibi mod p can be evaluated by d multiplications but only one modular

reduction instead of d. A modular reduction is at least as expensive as a multiplication,
and often much more, see Table 1.

Remark 1. We cannot add a reduced element to an unreduced element in Montgomery’s
representation. In fact, Montgomery’s representation a of the integer a is aR mod p (R
as in § 2.1 with N = p). Now, bc is congruent to bcR2 modp, not to bc = bcR mod p.
Hence, a and bc have been multiplied by different constants modp to obtain a and bc,
and a + bc bears no fixed relation to a + bc.

2.3 Implementation of the Explicit Formulae

We assume that the reader is acquainted with elliptic and hyperelliptic curves.

Elliptic Curves. We consider elliptic curves defined over a field F of odd characteristic
greater than 3 given by a Weierstrass equation

E : y2 = x3 + a4x + a6 (1)

where the polynomial x3 + a4x + a6 has no multiple roots. The set of points of E over
(any extension of) the field F and the point at infinity O form a group.

There are 5 different coordinate systems [9]: affine (A), the finite points “being”
the pairs (x, y) that satisfy (1); projective (P), also called homogeneous, where a point
[X, Y, Z] corresponds to (X/Z, Y/Z) in affine coordinates; Jacobian (J ), where a point
(X, Y, Z) corresponds to (X/Z2, Y/Z3); and two variants of J , namely, Chudnowski
Jacobian (J c), with coordinates (X, Y, Z, Z2, Z3), and modified Jacobian (J m), with
coordinates (X, Y, Z, a4Z

4). They are accurately described in [9], where the formulae
for all group operations are given. It is possible to add two points in any two different
coordinate systems and get a result in a third system. For example, when doing a scalar
multiplication, it is a good idea to keep the base point and all precomputed points in A,
since adding those points will be less expensive than using other coordinate systems.

For EC, only few savings in REDCs are possible.
Let us work out an example, namely, how many REDCs can be saved in the addition

A + P = P . Let P1 = (X1, Y1), P2 = [X2, Y2, Z2] and P3 = [X3, Y3, Z3]. Then,
P3 = P1 + P2 is computed as follows [9]:

u = Y2 − Y1Z2 v = X2 − X1Z2 , A = u2Z2 − v3 − 2v2X1Z2 ,
X3 = vA , Y3 = u(v2X1Z2 − A) − v3Y1Z2 , Z3 = v3Z2 .

For the computation of u and v no savings are possible. We cannot save any reductions
in the computation of A = u2Z2 −v3 −2v2X1Z2 because: We need v3 reduced anyway
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Table 2. Costs of Group Operations on EC and HEC

for Z3, A must be available also in reduced form to compute X3, and from v2X1Z2 we
subtract A in the computation of Y3; It is then easy to see that here no gain is obtained
by delaying reduction. But Y3 can be computed by first multiplying u by v2X1Z2 − A,
then v3 by Y1Z2, adding these two products and reducing the sum. Hence, one REDC can
be saved in the addition formula.

For affine coordinates, no REDCs can be saved. Additions in P allow saving of 1
REDC, even if one of the two points is in A. With no other addition formula we can
save reductions. For all doublings we can save 2 REDCs, except for the doubling in J m,
where no savings can be done due to the differences in the formulae depending on the
introduction of a4Z

4.
In Table 2, we write the operation counts of the implemented operations. Results for

genus 2 and 3 curves are given, too. The shorthand C1 + C2 = C3 means that two points
in the coordinate systems C1 and C2 are added and the result is given in C3, where any
of the Ci can be one of the applicable coordinate systems. Doubling a point in C1 with
result in C2 is denoted by 2C1 = C2. The number of REDCs is given separately from the
multiplications and squarings.

Hyperelliptic Curves. An excellent, low brow, introduction to hyperelliptic curves is
given in [28], including proofs of the facts used below.

A hyperelliptic curve C of genus g over a finite field Fq of odd characteristic is defined
by a Weierstrass equation y2 = f(x), where f is a monic, square-free polynomial of
degree 2g + 1. In general, the points on C do not form a group. Instead, the ideal
class group is used, which is isomorphic to the Jacobian variety of C. Its elements
are represented by pairs of polynomials and [7] showed how to compute with group
elements in this form. A generic ideal class is represented by a pair of polynomials
U(x) = xg +

∑d−1
i=0 Uix

i, V (x) =
∑d−1

i=0 Vix
i ∈ Fq[x] such that for each root ξ of

U(x), (ξ, V (ξ)) is a point on C (equivalently, U(x) divides V (x)2 − f(x)). The affine
coordinates are the 2g-tuple [Ug−1, . . . , U1, U0, Vg−1, . . . , V1, V0].

Genus 2. For genus 2 there are two more coordinate systems besides affine (A): in
projective coordinates (P) [30]: a quintuple [U1, U0, V1, V0, Z] corresponds to the ideal
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class represented by [x2 + U1/Z x + U0/Z, V1/Z x + V0/Z]; with Lange’s new co-
ordinates (N ) [24], the sextuple [U1, U0, V1, V0, Z1, Z2] corresponds to the ideal class
[x2 +U1/Z

2
1 x+U0/Z

2
1 , V1/Z

3
1Z2 x+V0/Z

3
1Z2]. The system N is important in scalar

multiplications since it has the fastest doubling. We refer to [24] for the formulae.

Table 3. Addition in genus 2, deg u1 = deg u2 = 2

We now see in an example – the addition formula in affine coordinates – how lazy
and incomplete reductions are used in practice. Table 3 is derived from results in [24],
but restricted to the odd characteristic case. The detailed breakdown of the REDCs we
can save follows:

1. In Step 1 we can save one REDC in the computation of r, since we do not need the
reduced value of z2z3 and z2

1u10 anywhere else.
2. In Step 3 we do not reduce w2 = ı0w0, since it is used in the computation of s′1 and

s′0, which are sums of products of two elements. So only 3 REDCs are required to
implement Step 3: for w3 and for the final results of s′1 and s′0. This is a saving of
two REDCs.

3. In Step 5, it would be desirable to leave the coefficients l′1 and l′0 of l′ unreduced, since
they are used in the following two steps only in additions with other products of two
elements. But l′1 = u21s

′′
0 +u20 is a problem: we cannot add reduced and unreduced
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quantities (see Remark 1). We circumvent this by computing the unreduced products
L1 = u21s

′′
0 (in place of �′1) and L0 = u20s

′′
0 . Two REDCs are saved.

4. In Step 6, it is u30 = (s′′0 −u11)(s′′0 −z1)+L1 +2v21w4 +(2u21 +z1)w5 +z2. We
need only one REDC to compute the (reduced) sum of the first four products: Note
that, at this point, L1 is already known and we already counted the saving of one
REDC associated to it. So, we save a total of two REDCs.

Summarizing, for one addition in affine coordinates in the most common case, we need
12 Muls, 13 MulNoREDCs and 6 REDCs. Thus, we save 7 REDCs.

We implemented addition and doubling in all coordinate systems. To speed up scalar
multiplication, we also implemented addition in the cases where one of the two group
elements to be added is given in A and the second summand and the result are both
given either in P or N .

In Table 2 we write the operation counts of the implemented operations. The table
contains also the counts for EC and genus 3 curves (see the next paragraph). The number
of modular reductions is always significantly smaller than the number of multiplications.

Genus 3. Affine coordinates are the only coordinate system currently available for genus
3 curves. The formulae in [32,33] contain some errors in odd characteristic. We took
the formulae of [40] – which are for general curves of the form y2 + h(x)y = f(x),
and have been implemented only in even characteristic with h(x) = 1 – and simplified
them for the case of odd characteristic, h(x) = 0, and vanishing second most significant
coefficient of f(x). A pleasant aspect of these formulae is that a large proportion of
modular reductions can be saved: at least 21 in the addition and 14 in the doubling (see
Table 2).

2.4 Scalar Multiplication

There are many methods for computing a scalar multiplication in a generic group, which
can be used for EC and HEC. See [15] for a survey.

A simple method for computing s · D for an integer s and a ideal class D is based
on the binary representation of s. If s =

∑n−1
i=0 si2i where each si = 0 or 1, then n · D

can be computed as

sD = 2( 2(· · · 2( 2(sn−1D) + sn−2D) + · · · ) + s1D) + s0D . (2)

This requires n − 1 doublings and on average n/2 − 1 additions on the curve (the first
addition is replaced by an assignment).

On EC and HEC, adding and subtracting an element have the same cost. Hence one
can use the non adjacent form (NAF) [34], which is an expansion s =

∑n
i=0 si2i with

si ∈ {0, ±1} and sisi+1 = 0. This leads to a method needing n doublings and on
average n/3 − 1 additions or subtractions.

A generalization of the NAF uses “sliding windows”: The wNAF [37,8] of the integer
s is a representation s =

∑n
j=0 sj 2j where the integers sj satisfy the following two

conditions: (i) either sj = 0 or sj is odd and |sj | � 2w; (ii) of any w + 1 consecutive
coefficients sj+w, . . . , sj at most one is nonzero. The 1NAF coincides with the NAF.
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The wNAF has average density 1/(w + 2). To compute a scalar multiplication based
on the wNAF one first precomputes the ideal classes D, 3D, . . . , (2w − 1)D, and then
performs a double-and-add step like (2). A left-to-right recoding with the same density
as the wNAF can be found in [4].

3 Results, Comparisons, and Conclusions

Table 4 reports the timings of our implementation. Since nuMONGO provides support only
for moduli up to 256 bits, EC are tested only on fields up to that size. For genus 2 curves
on a 256 bit field, a group up to 513 bits is possible: We choose this group size as a limit
also for the genus 3 curves.

All benchmarks were performed on a 1 GHz AMD Athlon (Model 4) PC, under
the Linux operating system (kernel version 2.4). The compilers used were the GNU C
Compiler (gcc), versions 2.95.3 and 3.3.1 and all the performance considerations made
in § 2.1 apply.

All groups have prime or almost prime order. The elliptic curves up to 256 bits have
been found by point counting on random curves, the larger ones as well as the genus 2
and 3 curves have been constructed with the CM method.

For each combination of curve type, coordinate system and group size, we averaged
the timings of several thousands scalar multiplications with random scalars, using three
different recodings of the scalar: the binary representation, the NAF, and the wNAF. For
the wNAF we report only the best timing and the corresponding value of w. We always
keep the base ideal class and its multiples in affine coordinates, since adding an affine
point to a point in any coordinate system other than affine is faster than adding two points
in that coordinate system. The timings always include the precomputations.

In Table 5 we provide timings for ecc and hec using gmp and the double-and-add
scalar multiplication based on the unsigned binary representation. We also provide in Ta-
ble 6 timings with nuMONGO but without lazy and incomplete reduction. For comparison
with our timings, Lange [23] reported timings of 8.232 and 9.121 milliseconds for genus
2 curves with group order ≈ 2160 and 2180 respectively on a gmp-based implementation
of affine coordinates on a 1.5 GHz Pentium 4 PC. In [23] the double-and-add algorithm
based on the unsigned binary representation is used. In [35], a timing of 98 milliseconds
for a genus 3 curve of about 180 bits (p ≈ 260) on an Alpha 21164A CPU running at
600MHz is reported. The speed of these two CPUs is close to that of the machine we
used for our tests.

A summary of the results follows:
1. Using a specialized software library one can get a speed-up by a factor of 3 to 4.5

for EC with respect to a traditional implementation. The speed-up for genus 2 and 3
curves is up to 8.

2. Lazy and incomplete reduction bring a speed-up from 3% to 10%.
3. For EC, the performance of the systems J and J m is almost identical. The reason

lies in the fact that with J m no modular reductions can be saved.
4. HEC are still slower than EC, but the gap has been narrowed.

a) Affine coordinates for genus 2 HEC are significantly faster than those for EC.
Those for genus 3 are faster from 144 bits upwards.
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Table 4. Comparison of running times, in msec (1 GHz AMD Athlon PC)

Table 5. Timings with gmp, in msec (1 GHz AMD Athlon PC)
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Table 6. Timings with nuMONGO without lazy and incomplete reduction, in msec (1 GHz AMD
Athlon PC)

b) Comparing the best coordinate systems and scalar multiplication algorithms for
genus 2 HEC and EC, we see that:

(i) For 192 bit, resp. 256 bit groups, EC is only 14%, resp. 15% faster than
HEC. In fact, consider the best timings for EC and HEC with genus 2 with
192 bits: (1.623 − 1.395)/1.623 = 0.1405 ≈ 14%.

(ii) For other group sizes the difference is often around 50%.
c) Genus 3 curves are slower than genus 2 ones. With gmp the difference is 80% to

100% for 160 to 512 bit groups, but using nuMONGO the gap is often as small as
50%.

5. Using nuMONGO we can successfully eliminate most of the overheads, thus proving
the soundness of our approach.
a) In the gmp-based implementation, the timings with different coordinate systems

are closer to each other than with nuMONGO because of the big amount of time lost
in the overheads. For HEC we have the paradoxical result that P and N are slower
than A, because they require more function calls for each group operation than
A. Therefore, with standard libraries the overheads can dominate the running
time.

b) For affine coordinates the most expensive part of the operation is the field in-
version, hence the speed-up given by nuMONGO is not big, and is close to that in
Table 1 for the inversion alone.

6. If the field size for a given group is not close to a multiple of the machine word
size b, there is a relative drop in performance with respect to other groups where the
field size is almost a multiple of b. For example, a 160-bit group can be given by a
genus 2 curve over a 80-bit field, but then 96-bit arithmetic must be used on a 32-bit
CPU. Similarly, with 224-bit groups, a genus 2 HEC is penalized by the 112-bit field
arithmetic. For 144-bit groups, genus 3 curves can exploit 48-bit arithmetic, which
has been made faster by suitable implementation tricks (an approach which did not
work for 80 and 112 bit fields), hence the gap to genus 2 is only 50%.

We conclude that the performance of hyperelliptic curves over prime fields is satisfactory
enough to be considered as a valid alternative to elliptic curves, especially when large
point groups are desired, and the bit length of the characteristic is close to (but smaller
than) a multiple of the machine word length.

In software implementations not only should we employ a custom software library, as
done for elliptic curves in [6], but for a further speed-up the use of lazy and incom-
plete reduction is recommended. Development of new explicit formulae should take into
account the possibility of delaying modular reductions.
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